This repo contains code developed for the CDA class - Fall 2019
python3 -m venv .env
source ./.env/bin/activate
pip install -r requirements.txt
./parse_images.py -h
usage: parse_images.py [-h] [-i INPUTDIR] [-o OUTPUTDIR] [-w WIDTH]
optional arguments:
-h, --help show this help message and exit
-i INPUTDIR, --inputdir INPUTDIR
input directory name
-o OUTPUTDIR, --outputdir OUTPUTDIR
output directory name
-w WIDTH, --width WIDTH
output image width (default 512 px)
brew cask install anaconda
du -hcs /usr/local/Caskroom/anaconda/2019.10/Anaconda3-2019.10-MacOSX-x86_64.sh
==> 424M
Update path to make accessible - add to ~/.zshrc
export PATH="/usr/local/anaconda3/bin:$PATH"
source ~/.zshrc
conda init zsh
conda create -n test-conda
conda activate test-conda
jupyter notebook
conda deactivate
conda remove -n test-conda -all
- https://en.wikipedia.org/wiki/Geohash#Design
- http://geohash.org/djm2wjk4u0rm
- https://github.com/vinsci/geohash/blob/master/Geohash/geohash.py
- (!) https://github.com/google/open-location-code/blob/master/python/openlocationcode_test.py
- (!) https://stackoverflow.com/questions/44416764/loading-folders-of-images-in-tensorflow
- (!) https://datascience.stackexchange.com/questions/761/clustering-geo-location-coordinates-lat-long-pairs/25424#25424
- https://nbviewer.jupyter.org/github/nborwankar/LearnDataScience/blob/master/notebooks/D3.%20K-Means%20Clustering%20Analysis.ipynb
- https://www.exiv2.org/tags.html