Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "Add support for arrays in hashaggregate [databricks] (#6066)" #6679

Merged
merged 1 commit into from
Oct 4, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 36 additions & 36 deletions docs/supported_ops.md
Original file line number Diff line number Diff line change
Expand Up @@ -556,7 +556,7 @@ Accelerator supports are described below.
<td>S</td>
<td><b>NS</b></td>
<td><b>NS</b></td>
<td><em>PS<br/>not allowed for grouping expressions if containing Struct as child;<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types BINARY, CALENDAR, UDT</em></td>
<td><em>PS<br/>not allowed for grouping expressions;<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types BINARY, CALENDAR, UDT</em></td>
<td><em>PS<br/>not allowed for grouping expressions;<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types BINARY, CALENDAR, UDT</em></td>
<td><em>PS<br/>not allowed for grouping expressions if containing Array or Map as child;<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types BINARY, CALENDAR, UDT</em></td>
<td><b>NS</b></td>
Expand Down Expand Up @@ -724,7 +724,7 @@ Accelerator supports are described below.
<td>S</td>
<td>S</td>
<td><b>NS</b></td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types CALENDAR, UDT</em></td>
<td><em>PS<br/>Round-robin partitioning is not supported if spark.sql.execution.sortBeforeRepartition is true;<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types CALENDAR, UDT</em></td>
<td><em>PS<br/>Round-robin partitioning is not supported if spark.sql.execution.sortBeforeRepartition is true;<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types CALENDAR, UDT</em></td>
<td><em>PS<br/>Round-robin partitioning is not supported for nested structs if spark.sql.execution.sortBeforeRepartition is true;<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types CALENDAR, UDT</em></td>
<td><b>NS</b></td>
Expand Down Expand Up @@ -7690,45 +7690,45 @@ are limited.
<td rowSpan="2">None</td>
<td rowSpan="2">project</td>
<td>input</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td><em>PS<br/>UTC is only supported TZ for TIMESTAMP</em></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP</em></td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP</em></td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP</em></td>
<td>S</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>result</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td><em>PS<br/>UTC is only supported TZ for TIMESTAMP</em></td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP</em></td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP</em></td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP</em></td>
<td>S</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td rowSpan="2">KnownNotNull</td>
Expand Down Expand Up @@ -18547,9 +18547,9 @@ as `a` don't show up in the table. They are controlled by the rules for
<td>S</td>
<td><b>NS</b></td>
<td><b>NS</b></td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types BINARY, CALENDAR, MAP, UDT</em></td>
<td><b>NS</b></td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types BINARY, CALENDAR, MAP, UDT</em></td>
<td><b>NS</b></td>
<td><em>PS<br/>UTC is only supported TZ for child TIMESTAMP;<br/>unsupported child types BINARY, CALENDAR, ARRAY, MAP, UDT</em></td>
<td><b>NS</b></td>
</tr>
<tr>
Expand Down
15 changes: 1 addition & 14 deletions integration_tests/src/main/python/hash_aggregate_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,19 +116,6 @@
('b', FloatGen(nullable=(True, 10.0), special_cases=[(float('nan'), 10.0)])),
('c', LongGen())]

# grouping single-level lists
_grpkey_list_with_non_nested_children = [[('a', RepeatSeqGen(ArrayGen(data_gen), length=3)),
('b', IntegerGen())] for data_gen in all_basic_gens + decimal_gens]

#grouping mutliple-level structs with arrays
_grpkey_nested_structs_with_array_basic_child = [
('a', RepeatSeqGen(StructGen([
['aa', IntegerGen()],
['ab', ArrayGen(IntegerGen())]]),
length=20)),
('b', IntegerGen()),
('c', NullGen())]

_nan_zero_float_special_cases = [
(float('nan'), 5.0),
(NEG_FLOAT_NAN_MIN_VALUE, 5.0),
Expand Down Expand Up @@ -331,7 +318,7 @@ def test_hash_reduction_decimal_overflow_sum(precision):
# some optimizations are conspiring against us.
conf = {'spark.rapids.sql.batchSizeBytes': '128m'})

@pytest.mark.parametrize('data_gen', [_grpkey_nested_structs_with_array_basic_child, _longs_with_nulls] + _grpkey_list_with_non_nested_children, ids=idfn)
@pytest.mark.parametrize('data_gen', [_longs_with_nulls], ids=idfn)
def test_hash_grpby_sum_count_action(data_gen):
assert_gpu_and_cpu_row_counts_equal(
lambda spark: gen_df(spark, data_gen, length=100).groupby('a').agg(f.sum('b'))
Expand Down
15 changes: 1 addition & 14 deletions integration_tests/src/main/python/repart_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,23 +214,10 @@ def test_round_robin_sort_fallback(data_gen):
lambda spark : gen_df(spark, data_gen).withColumn('extra', lit(1)).repartition(13),
'ShuffleExchangeExec')

@allow_non_gpu("ProjectExec", "ShuffleExchangeExec")
@ignore_order(local=True) # To avoid extra data shuffle by 'sort on Spark' for this repartition test.
@pytest.mark.parametrize('num_parts', [2, 10, 17, 19, 32], ids=idfn)
@pytest.mark.parametrize('gen', [([('ag', ArrayGen(StructGen([('b1', long_gen)])))], ['ag'])], ids=idfn)
def test_hash_repartition_exact_fallback(gen, num_parts):
data_gen = gen[0]
part_on = gen[1]
assert_gpu_fallback_collect(
lambda spark : gen_df(spark, data_gen, length=1024) \
.repartition(num_parts, *part_on) \
.withColumn('id', f.spark_partition_id()) \
.selectExpr('*'), "ShuffleExchangeExec")

@ignore_order(local=True) # To avoid extra data shuffle by 'sort on Spark' for this repartition test.
@pytest.mark.parametrize('num_parts', [1, 2, 10, 17, 19, 32], ids=idfn)
@pytest.mark.parametrize('gen', [
([('a', boolean_gen)], ['a']),
([('a', boolean_gen)], ['a']),
([('a', byte_gen)], ['a']),
([('a', short_gen)], ['a']),
([('a', int_gen)], ['a']),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1632,7 +1632,9 @@ object GpuOverrides extends Logging {
}),
expr[KnownFloatingPointNormalized](
"Tag to prevent redundant normalization",
ExprChecks.unaryProjectInputMatchesOutput(TypeSig.all, TypeSig.all),
ExprChecks.unaryProjectInputMatchesOutput(
TypeSig.DOUBLE + TypeSig.FLOAT,
TypeSig.DOUBLE + TypeSig.FLOAT),
(a, conf, p, r) => new UnaryExprMeta[KnownFloatingPointNormalized](a, conf, p, r) {
override def convertToGpu(child: Expression): GpuExpression =
GpuKnownFloatingPointNormalized(child)
Expand Down Expand Up @@ -3655,26 +3657,11 @@ object GpuOverrides extends Logging {
// This needs to match what murmur3 supports.
PartChecks(RepeatingParamCheck("hash_key",
(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL_128 +
TypeSig.STRUCT + TypeSig.ARRAY).nested(),
TypeSig.all)
),
TypeSig.STRUCT).nested(), TypeSig.all)),
(hp, conf, p, r) => new PartMeta[HashPartitioning](hp, conf, p, r) {
override val childExprs: Seq[BaseExprMeta[_]] =
hp.expressions.map(GpuOverrides.wrapExpr(_, conf, Some(this)))

override def tagPartForGpu(): Unit = {
val arrayWithStructsHashing = hp.expressions.exists(e =>
TrampolineUtil.dataTypeExistsRecursively(e.dataType,
dt => dt match {
case ArrayType(_: StructType, _) => true
case _ => false
})
)
if (arrayWithStructsHashing) {
willNotWorkOnGpu("hashing arrays with structs is not supported")
}
}

override def convertToGpu(): GpuPartitioning =
GpuHashPartitioning(childExprs.map(_.convertToGpu()), hp.numPartitions)
}),
Expand Down Expand Up @@ -3894,7 +3881,7 @@ object GpuOverrides extends Logging {
.withPsNote(TypeEnum.STRUCT, "Round-robin partitioning is not supported for nested " +
s"structs if ${SQLConf.SORT_BEFORE_REPARTITION.key} is true")
.withPsNote(
Seq(TypeEnum.MAP),
Seq(TypeEnum.ARRAY, TypeEnum.MAP),
"Round-robin partitioning is not supported if " +
s"${SQLConf.SORT_BEFORE_REPARTITION.key} is true"),
TypeSig.all),
Expand Down Expand Up @@ -3956,12 +3943,10 @@ object GpuOverrides extends Logging {
"The backend for hash based aggregations",
ExecChecks(
(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL_128 +
TypeSig.MAP + TypeSig.STRUCT + TypeSig.ARRAY)
TypeSig.MAP + TypeSig.ARRAY + TypeSig.STRUCT)
.nested()
.withPsNote(TypeEnum.MAP,
.withPsNote(Seq(TypeEnum.ARRAY, TypeEnum.MAP),
"not allowed for grouping expressions")
.withPsNote(TypeEnum.ARRAY,
"not allowed for grouping expressions if containing Struct as child")
.withPsNote(TypeEnum.STRUCT,
"not allowed for grouping expressions if containing Array or Map as child"),
TypeSig.all),
Expand Down
26 changes: 6 additions & 20 deletions sql-plugin/src/main/scala/com/nvidia/spark/rapids/aggregate.scala
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ import org.apache.spark.sql.execution.{ExplainUtils, SortExec, SparkPlan}
import org.apache.spark.sql.execution.aggregate.{BaseAggregateExec, HashAggregateExec, ObjectHashAggregateExec, SortAggregateExec}
import org.apache.spark.sql.rapids.{CpuToGpuAggregateBufferConverter, CudfAggregate, GpuAggregateExpression, GpuToCpuAggregateBufferConverter}
import org.apache.spark.sql.rapids.execution.{GpuShuffleMeta, TrampolineUtil}
import org.apache.spark.sql.types.{ArrayType, DataType, MapType, StructType}
import org.apache.spark.sql.types.{ArrayType, DataType, MapType}
import org.apache.spark.sql.vectorized.ColumnarBatch

object AggregateUtils {
Expand Down Expand Up @@ -868,27 +868,13 @@ abstract class GpuBaseAggregateMeta[INPUT <: SparkPlan](
groupingExpressions ++ aggregateExpressions ++ aggregateAttributes ++ resultExpressions

override def tagPlanForGpu(): Unit = {
// We don't support Maps as GroupBy keys yet, even if they are nested in Structs. So,
// We don't support Arrays and Maps as GroupBy keys yet, even they are nested in Structs. So,
// we need to run recursive type check on the structs.
val mapGroupings = agg.groupingExpressions.exists(e =>
val arrayOrMapGroupings = agg.groupingExpressions.exists(e =>
TrampolineUtil.dataTypeExistsRecursively(e.dataType,
dt => dt.isInstanceOf[MapType]))
if (mapGroupings) {
willNotWorkOnGpu("MapTypes in grouping expressions are not supported")
}

// We support Arrays as grouping expression but not if the child is a struct. So we need to
// run recursive type check on the lists of structs
val arrayWithStructsGroupings = agg.groupingExpressions.exists(e =>
TrampolineUtil.dataTypeExistsRecursively(e.dataType,
dt => dt match {
case ArrayType(_: StructType, _) => true
case _ => false
})
)
if (arrayWithStructsGroupings) {
willNotWorkOnGpu("ArrayTypes with Struct children in grouping expressions are not " +
"supported")
dt => dt.isInstanceOf[ArrayType] || dt.isInstanceOf[MapType]))
if (arrayOrMapGroupings) {
willNotWorkOnGpu("ArrayTypes or MapTypes in grouping expressions are not supported")
}

tagForReplaceMode()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -559,7 +559,7 @@ case class GpuBasicMin(child: Expression) extends GpuMin(child)
*/
case class GpuFloatMin(child: Expression) extends GpuMin(child)
with GpuReplaceWindowFunction {

override val dataType: DataType = child.dataType match {
case FloatType | DoubleType => child.dataType
case t => throw new IllegalStateException(s"child type $t is not FloatType or DoubleType")
Expand Down Expand Up @@ -606,7 +606,7 @@ case class GpuFloatMin(child: Expression) extends GpuMin(child)
// Else return the min value
override lazy val postUpdate: Seq[Expression] = Seq(
GpuIf(
updateAllNansOrNulls.attr,
updateAllNansOrNulls.attr,
GpuIf(
updateHasNan.attr, GpuLiteral(nan, dataType), GpuLiteral(null, dataType)
),
Expand Down Expand Up @@ -668,7 +668,7 @@ object GpuMax {
abstract class GpuMax(child: Expression) extends GpuAggregateFunction
with GpuBatchedRunningWindowWithFixer
with GpuAggregateWindowFunction
with GpuRunningWindowFunction
with GpuRunningWindowFunction
with Serializable {
override lazy val initialValues: Seq[GpuLiteral] = Seq(GpuLiteral(null, child.dataType))
override lazy val inputProjection: Seq[Expression] = Seq(child)
Expand Down Expand Up @@ -730,7 +730,7 @@ case class GpuBasicMax(child: Expression) extends GpuMax(child)
* column `isNan`. If any value in this column is true, return `Nan`,
* Else, return what `GpuBasicMax` returns.
*/
case class GpuFloatMax(child: Expression) extends GpuMax(child)
case class GpuFloatMax(child: Expression) extends GpuMax(child)
with GpuReplaceWindowFunction{

override val dataType: DataType = child.dataType match {
Expand All @@ -756,13 +756,13 @@ case class GpuFloatMax(child: Expression) extends GpuMax(child)
override lazy val updateAggregates: Seq[CudfAggregate] = Seq(updateMaxVal, updateIsNan)
// If there is `Nan` value in the target column, return `Nan`
// else return what the `CudfMax` returns
override lazy val postUpdate: Seq[Expression] =
override lazy val postUpdate: Seq[Expression] =
Seq(
GpuIf(updateIsNan.attr, GpuLiteral(nan, dataType), updateMaxVal.attr)
)

// Same logic as the `inputProjection` stage.
override lazy val preMerge: Seq[Expression] =
override lazy val preMerge: Seq[Expression] =
Seq(evaluateExpression, GpuIsNan(evaluateExpression))
// Same logic as the `updateAggregates` stage.
override lazy val mergeAggregates: Seq[CudfAggregate] = Seq(mergeMaxVal, mergeIsNan)
Expand Down
4 changes: 2 additions & 2 deletions tools/src/main/resources/supportedExprs.csv
Original file line number Diff line number Diff line change
Expand Up @@ -261,8 +261,8 @@ IsNotNull,S,`isnotnull`,None,project,input,S,S,S,S,S,S,S,S,PS,S,S,S,S,NS,PS,PS,P
IsNotNull,S,`isnotnull`,None,project,result,S,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA
IsNull,S,`isnull`,None,project,input,S,S,S,S,S,S,S,S,PS,S,S,S,S,NS,PS,PS,PS,NS
IsNull,S,`isnull`,None,project,result,S,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA
KnownFloatingPointNormalized,S, ,None,project,input,S,S,S,S,S,S,S,S,PS,S,S,S,S,S,PS,PS,PS,S
KnownFloatingPointNormalized,S, ,None,project,result,S,S,S,S,S,S,S,S,PS,S,S,S,S,S,PS,PS,PS,S
KnownFloatingPointNormalized,S, ,None,project,input,NA,NA,NA,NA,NA,S,S,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA
KnownFloatingPointNormalized,S, ,None,project,result,NA,NA,NA,NA,NA,S,S,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA
KnownNotNull,S, ,None,project,input,S,S,S,S,S,S,S,S,PS,S,S,NS,S,S,PS,PS,PS,NS
KnownNotNull,S, ,None,project,result,S,S,S,S,S,S,S,S,PS,S,S,NS,S,S,PS,PS,PS,NS
Lag,S,`lag`,None,window,input,S,S,S,S,S,S,S,S,PS,S,S,S,NS,NS,PS,NS,PS,NS
Expand Down