Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add CUDA async memory resource as an option #3447

Merged
merged 2 commits into from
Sep 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/configs.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ Name | Description | Default Value
<a name="memory.gpu.maxAllocFraction"></a>spark.rapids.memory.gpu.maxAllocFraction|The fraction of total GPU memory that limits the maximum size of the RMM pool. The value must be greater than or equal to the setting for spark.rapids.memory.gpu.allocFraction. Note that this limit will be reduced by the reserve memory configured in spark.rapids.memory.gpu.reserve.|1.0
<a name="memory.gpu.minAllocFraction"></a>spark.rapids.memory.gpu.minAllocFraction|The fraction of total GPU memory that limits the minimum size of the RMM pool. The value must be less than or equal to the setting for spark.rapids.memory.gpu.allocFraction.|0.25
<a name="memory.gpu.oomDumpDir"></a>spark.rapids.memory.gpu.oomDumpDir|The path to a local directory where a heap dump will be created if the GPU encounters an unrecoverable out-of-memory (OOM) error. The filename will be of the form: "gpu-oom-<pid>.hprof" where <pid> is the process ID.|None
<a name="memory.gpu.pool"></a>spark.rapids.memory.gpu.pool|Select the RMM pooling allocator to use. Valid values are "DEFAULT", "ARENA", and "NONE". With "DEFAULT", `rmm::mr::pool_memory_resource` is used; with "ARENA", `rmm::mr::arena_memory_resource` is used. If set to "NONE", pooling is disabled and RMM just passes through to CUDA memory allocation directly. Note: "ARENA" is the recommended pool allocator if CUDF is built with Per-Thread Default Stream (PTDS), as "DEFAULT" is known to be unstable (https://github.com/NVIDIA/spark-rapids/issues/1141)|ARENA
<a name="memory.gpu.pool"></a>spark.rapids.memory.gpu.pool|Select the RMM pooling allocator to use. Valid values are "DEFAULT", "ARENA", "ASYNC", and "NONE". With "DEFAULT", the RMM pool allocator is used; with "ARENA", the RMM arena allocator is used; with "ASYNC", the new CUDA stream-ordered memory allocator in CUDA 11.2+ is used. If set to "NONE", pooling is disabled and RMM just passes through to CUDA memory allocation directly. Note: "ARENA" is the recommended pool allocator if CUDF is built with Per-Thread Default Stream (PTDS), as "DEFAULT" is known to be unstable (https://github.com/NVIDIA/spark-rapids/issues/1141)|ARENA
<a name="memory.gpu.pooling.enabled"></a>spark.rapids.memory.gpu.pooling.enabled|Should RMM act as a pooling allocator for GPU memory, or should it just pass through to CUDA memory allocation directly. DEPRECATED: please use spark.rapids.memory.gpu.pool instead.|true
<a name="memory.gpu.reserve"></a>spark.rapids.memory.gpu.reserve|The amount of GPU memory that should remain unallocated by RMM and left for system use such as memory needed for kernels, kernel launches or JIT compilation.|1073741824
<a name="memory.gpu.unspill.enabled"></a>spark.rapids.memory.gpu.unspill.enabled|When a spilled GPU buffer is needed again, should it be unspilled, or only copied back into GPU memory temporarily. Unspilling may be useful for GPU buffers that are needed frequently, for example, broadcast variables; however, it may also increase GPU memory usage|false
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,9 @@ object GpuDeviceManager extends Logging {
case c if "arena".equalsIgnoreCase(c) =>
features += "ARENA"
init | RmmAllocationMode.ARENA
case c if "async".equalsIgnoreCase(c) =>
features += "ASYNC"
init | RmmAllocationMode.CUDA_ASYNC
case c if "none".equalsIgnoreCase(c) =>
// Pooling is disabled.
init
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -411,12 +411,13 @@ object RapidsConf {
.createWithDefault(true)

val RMM_POOL = conf("spark.rapids.memory.gpu.pool")
.doc("Select the RMM pooling allocator to use. Valid values are \"DEFAULT\", \"ARENA\", and " +
"\"NONE\". With \"DEFAULT\", `rmm::mr::pool_memory_resource` is used; with \"ARENA\", " +
"`rmm::mr::arena_memory_resource` is used. If set to \"NONE\", pooling is disabled and RMM " +
.doc("Select the RMM pooling allocator to use. Valid values are \"DEFAULT\", \"ARENA\", " +
"\"ASYNC\", and \"NONE\". With \"DEFAULT\", the RMM pool allocator is used; with " +
"\"ARENA\", the RMM arena allocator is used; with \"ASYNC\", the new CUDA stream-ordered " +
"memory allocator in CUDA 11.2+ is used. If set to \"NONE\", pooling is disabled and RMM " +
"just passes through to CUDA memory allocation directly. Note: \"ARENA\" is the " +
"recommended pool allocator if CUDF is built with Per-Thread Default Stream (PTDS), " +
"as \"DEFAULT\" is known to be unstable (https://github.com/NVIDIA/spark-rapids/issues/1141)")
"recommended pool allocator if CUDF is built with Per-Thread Default Stream (PTDS), as " +
"\"DEFAULT\" is known to be unstable (https://github.com/NVIDIA/spark-rapids/issues/1141)")
.stringConf
.createWithDefault("ARENA")

Expand Down