Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support bucketing write for GPU #10957

Merged
merged 18 commits into from
Jun 24, 2024
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion integration_tests/src/main/python/asserts.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2020-2023, NVIDIA CORPORATION.
# Copyright (c) 2020-2024, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -101,6 +101,11 @@ def _assert_equal(cpu, gpu, float_check, path):
else:
assert False, "Found unexpected type {} at {}".format(t, path)

def assert_equal_with_sort(cpu, gpu):
if should_sort_locally():
_sort_locally(cpu, gpu)
assert_equal(cpu, gpu)
jlowe marked this conversation as resolved.
Show resolved Hide resolved

def assert_equal(cpu, gpu):
"""Verify that the result from the CPU and the GPU are equal"""
try:
Expand Down
47 changes: 37 additions & 10 deletions integration_tests/src/main/python/orc_write_test.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2020-2023, NVIDIA CORPORATION.
# Copyright (c) 2020-2024, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -209,7 +209,7 @@ def test_write_sql_save_table(spark_tmp_path, orc_gens, ts_type, orc_impl, spark
@pytest.mark.parametrize('codec', ['zlib', 'lzo'])
def test_orc_write_compression_fallback(spark_tmp_path, codec, spark_tmp_table_factory):
gen = TimestampGen()
data_path = spark_tmp_path + '/PARQUET_DATA'
data_path = spark_tmp_path + '/ORC_DATA'
all_confs={'spark.sql.orc.compression.codec': codec, 'spark.rapids.sql.format.orc.write.enabled': True}
assert_gpu_fallback_write(
lambda spark, path: unary_op_df(spark, gen).coalesce(1).write.format("orc").mode('overwrite').option("path", path).saveAsTable(spark_tmp_table_factory.get()),
Expand All @@ -218,17 +218,44 @@ def test_orc_write_compression_fallback(spark_tmp_path, codec, spark_tmp_table_f
'DataWritingCommandExec',
conf=all_confs)

@ignore_order
@allow_non_gpu('DataWritingCommandExec,ExecutedCommandExec,WriteFilesExec')
def test_buckets_write_fallback(spark_tmp_path, spark_tmp_table_factory):
@ignore_order(local=True)
def test_buckets_write_round_trip(spark_tmp_path, spark_tmp_table_factory):
data_path = spark_tmp_path + '/ORC_DATA'
gen_list = [["id", int_gen], ["data", long_gen]]
assert_gpu_and_cpu_writes_are_equal_collect(
lambda spark, path: gen_df(spark, gen_list).selectExpr("id % 100 as b_id", "data").write
.bucketBy(4, "b_id").format('orc').mode('overwrite').option("path", path)
.saveAsTable(spark_tmp_table_factory.get()),
lambda spark, path: spark.read.orc(path),
data_path,
conf={'spark.rapids.sql.format.orc.write.enabled': True})

@allow_non_gpu('DataWritingCommandExec,ExecutedCommandExec,WriteFilesExec, SortExec')
def test_buckets_write_fallback_for_map(spark_tmp_path, spark_tmp_table_factory):
data_path = spark_tmp_path + '/ORC_DATA'
gen_list = [["id", binary_gen], ["data", long_gen]]
assert_gpu_fallback_write(
lambda spark, path: spark.range(10e4).write.bucketBy(4, "id").sortBy("id").format('orc').mode('overwrite').option("path", path).saveAsTable(spark_tmp_table_factory.get()),
lambda spark, path: spark.read.orc(path),
data_path,
'DataWritingCommandExec',
conf = {'spark.rapids.sql.format.orc.write.enabled': True})
lambda spark, path: gen_df(spark, gen_list).selectExpr("id as b_id", "data").write
.bucketBy(4, "b_id").format('orc').mode('overwrite').option("path", path)
.saveAsTable(spark_tmp_table_factory.get()),
lambda spark, path: spark.read.orc(path),
data_path,
'DataWritingCommandExec',
conf={'spark.rapids.sql.format.orc.write.enabled': True})

@ignore_order(local=True)
def test_partitions_and_buckets_write_round_trip(spark_tmp_path, spark_tmp_table_factory):
data_path = spark_tmp_path + '/ORC_DATA'
gen_list = [["id", int_gen], ["data", long_gen]]
assert_gpu_and_cpu_writes_are_equal_collect(
lambda spark, path: gen_df(spark, gen_list)
.selectExpr("id % 5 as b_id", "id % 10 as p_id", "data").write
.partitionBy("p_id")
.bucketBy(4, "b_id").format('orc').mode('overwrite').option("path", path)
.saveAsTable(spark_tmp_table_factory.get()),
lambda spark, path: spark.read.orc(path),
data_path,
conf={'spark.rapids.sql.format.orc.write.enabled': True})

revans2 marked this conversation as resolved.
Show resolved Hide resolved
@ignore_order
@allow_non_gpu('DataWritingCommandExec,ExecutedCommandExec,WriteFilesExec')
Expand Down
82 changes: 74 additions & 8 deletions integration_tests/src/main/python/parquet_write_test.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2020-2023, NVIDIA CORPORATION.
# Copyright (c) 2020-2024, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -405,16 +405,82 @@ def test_parquet_writeLegacyFormat_fallback(spark_tmp_path, spark_tmp_table_fact
'DataWritingCommandExec',
conf=all_confs)

@ignore_order
@allow_non_gpu('DataWritingCommandExec,ExecutedCommandExec,WriteFilesExec')
def test_buckets_write_fallback(spark_tmp_path, spark_tmp_table_factory):
@ignore_order(local=True)
def test_buckets_write_round_trip(spark_tmp_path, spark_tmp_table_factory):
data_path = spark_tmp_path + '/PARQUET_DATA'
gen_list = [["id", int_gen], ["data", long_gen]]
assert_gpu_and_cpu_writes_are_equal_collect(
lambda spark, path: gen_df(spark, gen_list).selectExpr("id % 100 as b_id", "data").write
.bucketBy(4, "b_id").format('parquet').mode('overwrite').option("path", path)
.saveAsTable(spark_tmp_table_factory.get()),
lambda spark, path: spark.read.parquet(path),
data_path,
conf=writer_confs)


@ignore_order(local=True)
def test_buckets_write_correctness(spark_tmp_path, spark_tmp_table_factory):
cpu_path = spark_tmp_path + '/PARQUET_DATA/CPU'
gpu_path = spark_tmp_path + '/PARQUET_DATA/GPU'
gen_list = [["id", int_gen], ["data", long_gen]]
num_buckets = 4

def do_bucketing_write(spark, path):
df = gen_df(spark, gen_list).selectExpr("id % 100 as b_id", "data")
df.write.bucketBy(num_buckets, "b_id").format('parquet').mode('overwrite') \
.option("path", path).saveAsTable(spark_tmp_table_factory.get())

def read_single_bucket(path, bucket_id):
# Bucket Id string format: f"_$id%05d" + ".c$fileCounter%03d".
# fileCounter is always 0 in this test. For example '_00002.c000' is for
# bucket id being 2.
# We leverage this bucket segment in the file path to filter rows belong
# to a bucket.
bucket_segment = '_' + "{}".format(bucket_id).rjust(5, '0') + '.c000'
return with_cpu_session(
lambda spark: spark.read.parquet(path)
.withColumn('file_name', f.input_file_name())
.filter(f.col('file_name').contains(bucket_segment))
.selectExpr('b_id', 'data') # need to drop the file_name column for comparison.
.collect())

with_cpu_session(lambda spark: do_bucketing_write(spark, cpu_path), writer_confs)
with_gpu_session(lambda spark: do_bucketing_write(spark, gpu_path), writer_confs)
cur_bucket_id = 0
while cur_bucket_id < num_buckets:
# Verify the result bucket by bucket
ret_cpu = read_single_bucket(cpu_path, cur_bucket_id)
ret_gpu = read_single_bucket(gpu_path, cur_bucket_id)
assert_equal_with_sort(ret_cpu, ret_gpu)
cur_bucket_id += 1


@allow_non_gpu('DataWritingCommandExec,ExecutedCommandExec,WriteFilesExec, SortExec')
def test_buckets_write_fallback_for_map(spark_tmp_path, spark_tmp_table_factory):
data_path = spark_tmp_path + '/PARQUET_DATA'
gen_list = [["id", binary_gen], ["data", long_gen]]
assert_gpu_fallback_write(
lambda spark, path: spark.range(10e4).write.bucketBy(4, "id").sortBy("id").format('parquet').mode('overwrite').option("path", path).saveAsTable(spark_tmp_table_factory.get()),
lambda spark, path: spark.read.parquet(path),
data_path,
'DataWritingCommandExec')
lambda spark, path: gen_df(spark, gen_list).selectExpr("id as b_id", "data").write
.bucketBy(4, "b_id").format('parquet').mode('overwrite').option("path", path)
.saveAsTable(spark_tmp_table_factory.get()),
lambda spark, path: spark.read.parquet(path),
data_path,
'DataWritingCommandExec',
conf=writer_confs)

@ignore_order(local=True)
def test_partitions_and_buckets_write_round_trip(spark_tmp_path, spark_tmp_table_factory):
data_path = spark_tmp_path + '/PARQUET_DATA'
gen_list = [["id", int_gen], ["data", long_gen]]
assert_gpu_and_cpu_writes_are_equal_collect(
lambda spark, path: gen_df(spark, gen_list)
.selectExpr("id % 5 as b_id", "id % 10 as p_id", "data").write
.partitionBy("p_id")
.bucketBy(4, "b_id").format('parquet').mode('overwrite').option("path", path)
.saveAsTable(spark_tmp_table_factory.get()),
lambda spark, path: spark.read.parquet(path),
data_path,
conf=writer_confs)
revans2 marked this conversation as resolved.
Show resolved Hide resolved

@ignore_order
@allow_non_gpu('DataWritingCommandExec,ExecutedCommandExec,WriteFilesExec')
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
* Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand All @@ -21,7 +21,7 @@ import com.nvidia.spark.rapids.Arm.withResource
import com.nvidia.spark.rapids.shims.ShimExpression

import org.apache.spark.sql.catalyst.expressions.Expression
import org.apache.spark.sql.rapids.GpuMurmur3Hash
import org.apache.spark.sql.rapids.{GpuMurmur3Hash, GpuPmod}
import org.apache.spark.sql.types.{DataType, IntegerType}
import org.apache.spark.sql.vectorized.ColumnarBatch

Expand Down Expand Up @@ -59,6 +59,10 @@ abstract class GpuHashPartitioningBase(expressions: Seq[Expression], numPartitio
sliceInternalGpuOrCpuAndClose(numRows, partitionIndexes, partitionColumns)
}
}

def partitionIdExpression: GpuExpression = GpuPmod(
GpuMurmur3Hash(expressions, GpuHashPartitioningBase.DEFAULT_HASH_SEED),
GpuLiteral(numPartitions))
}

object GpuHashPartitioningBase {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -322,10 +322,11 @@ final class InsertIntoHadoopFsRelationCommandMeta(
private var fileFormat: Option[ColumnarFileFormat] = None

override def tagSelfForGpuInternal(): Unit = {
if (cmd.bucketSpec.isDefined) {
willNotWorkOnGpu("bucketing is not supported")
if (GpuBucketingUtils.isHiveHashBucketing(cmd.options)) {
GpuBucketingUtils.tagForHiveBucketingWrite(this, cmd.bucketSpec, cmd.outputColumns, false)
} else {
BucketIdMetaUtils.tagForBucketingWrite(this, cmd.bucketSpec, cmd.outputColumns)
}

val spark = SparkSession.active
val formatCls = cmd.fileFormat.getClass
fileFormat = if (formatCls == classOf[CSVFileFormat]) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ import com.google.common.base.Charsets
import com.nvidia.spark.rapids._
import com.nvidia.spark.rapids.Arm.withResource
import com.nvidia.spark.rapids.jni.CastStrings
import com.nvidia.spark.rapids.shims.GpuBucketingUtils
import org.apache.hadoop.mapreduce.{Job, TaskAttemptContext}

import org.apache.spark.internal.Logging
Expand All @@ -43,9 +44,8 @@ object GpuHiveFileFormat extends Logging {
def tagGpuSupport(meta: GpuInsertIntoHiveTableMeta): Option[ColumnarFileFormat] = {
val insertCmd = meta.wrapped
// Bucketing write
if (insertCmd.table.bucketSpec.isDefined) {
meta.willNotWorkOnGpu("bucketed tables are not supported yet")
}
GpuBucketingUtils.tagForHiveBucketingWrite(meta, insertCmd.table.bucketSpec,
insertCmd.outputColumns, false)

// Infer the file format from the serde string, similar as what Spark does in
// RelationConversions for Hive.
Expand Down
Loading