Skip to content

Commit

Permalink
Change the number of partitions to zero when a range is empty (#1542)
Browse files Browse the repository at this point in the history
Signed-off-by: Robert (Bobby) Evans <[email protected]>
  • Loading branch information
revans2 authored Jan 15, 2021
1 parent 291a20a commit 4df63a5
Showing 1 changed file with 70 additions and 63 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,7 @@ case class GpuRangeExec(range: org.apache.spark.sql.catalyst.plans.logical.Range
val step: Long = range.step
val numSlices: Int = range.numSlices.getOrElse(sparkContext.defaultParallelism)
val numElements: BigInt = range.numElements
val isEmptyRange: Boolean = start == end || (start < end ^ 0 < step)

override val output: Seq[Attribute] = range.output

Expand Down Expand Up @@ -224,76 +225,82 @@ case class GpuRangeExec(range: org.apache.spark.sql.catalyst.plans.logical.Range
val totalTime = longMetric(TOTAL_TIME)
val maxRowCountPerBatch = Math.min(targetSizeBytes/8, Int.MaxValue)

sqlContext
.sparkContext
.parallelize(0 until numSlices, numSlices)
.mapPartitionsWithIndex { (i, _) =>
val partitionStart = (i * numElements) / numSlices * step + start
val partitionEnd = (((i + 1) * numElements) / numSlices) * step + start
def getSafeMargin(bi: BigInt): Long =
if (bi.isValidLong) {
bi.toLong
} else if (bi > 0) {
Long.MaxValue
} else {
Long.MinValue
}
val safePartitionStart = getSafeMargin(partitionStart) // inclusive
val safePartitionEnd = getSafeMargin(partitionEnd) // exclusive, unless start == this
val taskContext = TaskContext.get()

val iter: Iterator[ColumnarBatch] = new Iterator[ColumnarBatch] {
private[this] var number: Long = safePartitionStart
private[this] var done: Boolean = false
private[this] val inputMetrics = taskContext.taskMetrics().inputMetrics

override def hasNext: Boolean =
if (!done) {
if (step > 0) {
number < safePartitionEnd
} else {
number > safePartitionEnd
}
} else false

override def next(): ColumnarBatch =
withResource(new NvtxWithMetrics("GpuRange", NvtxColor.DARK_GREEN, totalTime)){
_ =>
GpuSemaphore.acquireIfNecessary(taskContext)
val start = number
val remainingSteps = (safePartitionEnd - start) / step
// Start is inclusive so we need to produce at least one row
val rowsThisBatch = Math.max(1, Math.min(remainingSteps, maxRowCountPerBatch))
val endInclusive = start + ((rowsThisBatch - 1) * step)
number = endInclusive + step
if (number < endInclusive ^ step < 0) {
// we have Long.MaxValue + Long.MaxValue < Long.MaxValue
// and Long.MinValue + Long.MinValue > Long.MinValue, so iff the step causes a
// step back, we are pretty sure that we have an overflow.
done = true
if (isEmptyRange) {
sparkContext.emptyRDD[ColumnarBatch]
} else {
sqlContext
.sparkContext
.parallelize(0 until numSlices, numSlices)
.mapPartitionsWithIndex { (i, _) =>
val partitionStart = (i * numElements) / numSlices * step + start
val partitionEnd = (((i + 1) * numElements) / numSlices) * step + start

def getSafeMargin(bi: BigInt): Long =
if (bi.isValidLong) {
bi.toLong
} else if (bi > 0) {
Long.MaxValue
} else {
Long.MinValue
}

val safePartitionStart = getSafeMargin(partitionStart) // inclusive
val safePartitionEnd = getSafeMargin(partitionEnd) // exclusive, unless start == this
val taskContext = TaskContext.get()

val iter: Iterator[ColumnarBatch] = new Iterator[ColumnarBatch] {
private[this] var number: Long = safePartitionStart
private[this] var done: Boolean = false
private[this] val inputMetrics = taskContext.taskMetrics().inputMetrics

override def hasNext: Boolean =
if (!done) {
if (step > 0) {
number < safePartitionEnd
} else {
number > safePartitionEnd
}
} else false

override def next(): ColumnarBatch =
withResource(new NvtxWithMetrics("GpuRange", NvtxColor.DARK_GREEN, totalTime)) {
_ =>
GpuSemaphore.acquireIfNecessary(taskContext)
val start = number
val remainingSteps = (safePartitionEnd - start) / step
// Start is inclusive so we need to produce at least one row
val rowsThisBatch = Math.max(1, Math.min(remainingSteps, maxRowCountPerBatch))
val endInclusive = start + ((rowsThisBatch - 1) * step)
number = endInclusive + step
if (number < endInclusive ^ step < 0) {
// we have Long.MaxValue + Long.MaxValue < Long.MaxValue
// and Long.MinValue + Long.MinValue > Long.MinValue, so iff the step causes a
// step back, we are pretty sure that we have an overflow.
done = true
}

val ret = withResource(Scalar.fromLong(start)) { startScalar =>
withResource(Scalar.fromLong(step)) { stepScalar =>
withResource(
ai.rapids.cudf.ColumnVector.sequence(
startScalar, stepScalar, rowsThisBatch.toInt)) { vec =>
withResource(new Table(vec)) { tab =>
GpuColumnVector.from(tab, Array[DataType](LongType))
val ret = withResource(Scalar.fromLong(start)) { startScalar =>
withResource(Scalar.fromLong(step)) { stepScalar =>
withResource(
ai.rapids.cudf.ColumnVector.sequence(
startScalar, stepScalar, rowsThisBatch.toInt)) { vec =>
withResource(new Table(vec)) { tab =>
GpuColumnVector.from(tab, Array[DataType](LongType))
}
}
}
}
}

assert (rowsThisBatch == ret.numRows())
numOutputRows += rowsThisBatch
TrampolineUtil.incInputRecordsRows(inputMetrics, rowsThisBatch)
numOutputBatches += 1
ret
}
assert(rowsThisBatch == ret.numRows())
numOutputRows += rowsThisBatch
TrampolineUtil.incInputRecordsRows(inputMetrics, rowsThisBatch)
numOutputBatches += 1
ret
}
}
new InterruptibleIterator(taskContext, iter)
}
new InterruptibleIterator(taskContext, iter)
}
}
}

override def simpleString(maxFields: Int): String = {
Expand Down

0 comments on commit 4df63a5

Please sign in to comment.