Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding more Threadblock Tiles for Mixed-input TensorOp (BF16 * S8) in cutlass_library #1132

Merged
merged 3 commits into from
Oct 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
# PyCache files
__pycache__/
cutlass_library.egg-info/
hwu36 marked this conversation as resolved.
Show resolved Hide resolved
105 changes: 91 additions & 14 deletions python/cutlass_library/generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ def CreateGemmOperator(manifest, layouts, tile_descriptions, data_type, \
# If alignment is a tuple or a list, then we have different alignments for A and B
alignment_a = alignment if isinstance(alignment, int) else alignment[0]
alignment_b = alignment if isinstance(alignment, int) else alignment[1]
alignment_c = min(8, alignment_a)
alignment_c = min(8, alignment_a) if isinstance(alignment, int) else alignment[2]

A = TensorDescription(element_a, layout[0], alignment_a, complex_transform[0])
B = TensorDescription(element_b, layout[1], alignment_b, complex_transform[1])
Expand Down Expand Up @@ -2155,7 +2155,7 @@ def GenerateSM80_PlanarComplexTensorOp_16816(manifest, cuda_version):


#
def GenerateSM80_MixedInputTensorOp_16816(manifest, cuda_version):
def GenerateSM80_TensorOp_16816_mixed_input_upcast_a(manifest, cuda_version):
hwu36 marked this conversation as resolved.
Show resolved Hide resolved

if not CudaToolkitVersionSatisfies(cuda_version, 11, 0):
return
Expand Down Expand Up @@ -2196,27 +2196,66 @@ def GenerateSM80_MixedInputTensorOp_16816(manifest, cuda_version):
min_cc = 80
max_cc = 1024

# For mixed-input alignment constraints are a list of lists, where the inner list
# contains the alignment constraints for [operandA, operandB].
alignment_constraints = [[16, 8],]
# For mixed-input alignment constraints are a list of lists, where the
# inner list contains the alignment constraints for operands/matrices
# [[alignA, alignB, alignC],..]
alignment_constraints = [[16, 8, 8],]

for math_inst in math_instructions:
tile_descriptions = [
# 128x128
TileDescription([128, 128, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x64
TileDescription([128, 64, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x32
TileDescription([128, 32, 64], 9, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 32, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x16
TileDescription([128, 16, 64], 5, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 64], 3, [2, 1, 1], math_inst, min_cc, max_cc),
]

data_type = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_b,
math_inst.element_accumulator,
math_inst.element_accumulator,
]

CreateGemmOperator(manifest, layouts, tile_descriptions, \
data_type, alignment_constraints)

# Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation)
if math_inst.element_a != math_inst.element_accumulator:

data_type_mixed = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_b,
math_inst.element_accumulator,
]

operations = CreateGemmOperator(manifest, layouts, tile_descriptions, \
data_type_mixed, alignment_constraints)

# Upcast on Operand B
for op in operations:
if op.tile_description.threadblock_shape[1] <= 32:
op.C.alignment = 4


#
def GenerateSM80_TensorOp_16816_mixed_input_upcast_b(manifest, cuda_version):

if not CudaToolkitVersionSatisfies(cuda_version, 11, 0):
return

layouts = [
(LayoutType.RowMajor, LayoutType.ColumnMajor, LayoutType.ColumnMajor),
]

math_instructions = [
MathInstruction( \
[16, 8, 16], \
Expand All @@ -2243,26 +2282,64 @@ def GenerateSM80_MixedInputTensorOp_16816(manifest, cuda_version):
min_cc = 80
max_cc = 1024

# For mixed-input alignment constraints are a list of lists, where the inner list
# contains the alignment constraints for [operandA, operandB].
alignment_constraints = [[8, 16],]

# For mixed-input alignment constraints are a list of lists, where the
# inner list contains the alignment constraints for operands/matrices
# [[alignA, alignB, alignC],..]
alignment_constraints = [[8, 16, 8],]


for math_inst in math_instructions:
tile_descriptions = [
# 128x128
TileDescription([128, 128, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 128, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x64
TileDescription([128, 64, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 4, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 64, 64], 3, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x32
TileDescription([128, 32, 64], 9, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 32, 64], 5, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 32, 32], 9, [2, 2, 1], math_inst, min_cc, max_cc),
TileDescription([128, 32, 32], 5, [2, 2, 1], math_inst, min_cc, max_cc),
# 128x16
TileDescription([128, 16, 64], 5, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 64], 3, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 32], 9, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 32], 5, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([128, 16, 32], 3, [2, 1, 1], math_inst, min_cc, max_cc),
# 256x16
TileDescription([256, 16, 32], 5, [2, 1, 1], math_inst, min_cc, max_cc),
TileDescription([256, 16, 32], 3, [2, 1, 1], math_inst, min_cc, max_cc),
]

data_type = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_a,
math_inst.element_accumulator,
math_inst.element_accumulator,
]

CreateGemmOperator(manifest, layouts, tile_descriptions, \
data_type, alignment_constraints)

# Avoid emitting two kernels if the accumulator type does not differ from the input type (e.g. F16 accumulation)
if math_inst.element_a != math_inst.element_accumulator:

data_type_mixed = [
math_inst.element_a,
math_inst.element_b,
math_inst.element_a,
math_inst.element_accumulator,
]

operations = CreateGemmOperator(manifest, layouts, tile_descriptions, \
data_type_mixed, alignment_constraints)

for op in operations:
if op.tile_description.threadblock_shape[1] <= 32:
op.C.alignment = 4

#
def GenerateSM80_TensorOp_16832_TN(manifest, cuda_version):

Expand Down Expand Up @@ -2645,7 +2722,6 @@ def GenerateSM80_TensorOp_16864_Interleaved(manifest, cuda_version):

for op in operations:
op.C.alignment = 16
#

#
def GenerateSM80_TensorOp_168256(manifest, cuda_version):
Expand Down Expand Up @@ -4196,7 +4272,8 @@ def GenerateSM80(manifest, cuda_version):
GenerateSM80_TensorOp_884_symm(manifest, cuda_version)
GenerateSM80_TensorOp_884_symm_complex(manifest, cuda_version)
GenerateSM80_TensorOp_884_symm_complex_gaussian(manifest, cuda_version)
GenerateSM80_MixedInputTensorOp_16816(manifest, cuda_version)
GenerateSM80_TensorOp_16816_mixed_input_upcast_a(manifest, cuda_version)
GenerateSM80_TensorOp_16816_mixed_input_upcast_b(manifest, cuda_version)
GenerateSM80_TensorOp_16832_TN(manifest, cuda_version)
GenerateSM80_SparseTensorOp_16864_TN(manifest, cuda_version)
GenerateSM80_TensorOp_16832_Interleaved(manifest, cuda_version)
Expand Down
2 changes: 2 additions & 0 deletions test/unit/gemm/device/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -350,10 +350,12 @@ cutlass_test_unit_add_executable(
# Upcast on Operand A
gemm_universal_u8t_f16n_f16t_mixed_input_tensor_op_f16_sm80.cu
gemm_universal_s8t_f16n_f16t_mixed_input_tensor_op_f16_sm80.cu
gemm_universal_s8t_bf16n_bf16t_mixed_input_tensor_op_f32_sm80.cu

# Upcast on Operand B
gemm_universal_f16t_u8n_f16t_mixed_input_tensor_op_f16_sm80.cu
gemm_universal_f16t_s8n_f16t_mixed_input_tensor_op_f16_sm80.cu
gemm_universal_bf16t_s8n_bf16t_mixed_input_tensor_op_f32_sm80.cu
)

cutlass_test_unit_add_executable(
Expand Down
Loading