Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

rnnt_greedy_decoding.py: typos? auto-repressively -> auto-regressively #6989

Merged
merged 1 commit into from
Jul 7, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 11 additions & 11 deletions nemo/collections/asr/parts/submodules/rnnt_greedy_decoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@ def _joint_step(self, enc, pred, log_normalize: Optional[bool] = None):
class GreedyRNNTInfer(_GreedyRNNTInfer):
"""A greedy transducer decoder.

Sequence level greedy decoding, performed auto-repressively.
Sequence level greedy decoding, performed auto-regressively.

Args:
decoder_model: rnnt_utils.AbstractRNNTDecoder implementation.
Expand Down Expand Up @@ -326,7 +326,7 @@ def forward(
partial_hypotheses: Optional[List[rnnt_utils.Hypothesis]] = None,
):
"""Returns a list of hypotheses given an input batch of the encoder hidden embedding.
Output token is generated auto-repressively.
Output token is generated auto-regressively.

Args:
encoder_output: A tensor of size (batch, features, timesteps).
Expand Down Expand Up @@ -479,7 +479,7 @@ def _greedy_decode(
class GreedyBatchedRNNTInfer(_GreedyRNNTInfer):
"""A batch level greedy transducer decoder.

Batch level greedy decoding, performed auto-repressively.
Batch level greedy decoding, performed auto-regressively.

Args:
decoder_model: rnnt_utils.AbstractRNNTDecoder implementation.
Expand Down Expand Up @@ -571,7 +571,7 @@ def forward(
partial_hypotheses: Optional[List[rnnt_utils.Hypothesis]] = None,
):
"""Returns a list of hypotheses given an input batch of the encoder hidden embedding.
Output token is generated auto-repressively.
Output token is generated auto-regressively.

Args:
encoder_output: A tensor of size (batch, features, timesteps).
Expand Down Expand Up @@ -1034,7 +1034,7 @@ def __init__(self, encoder_model: str, decoder_joint_model: str, max_symbols_per

def __call__(self, audio_signal: torch.Tensor, length: torch.Tensor):
"""Returns a list of hypotheses given an input batch of the encoder hidden embedding.
Output token is generated auto-repressively.
Output token is generated auto-regressively.

Args:
encoder_output: A tensor of size (batch, features, timesteps).
Expand Down Expand Up @@ -1455,7 +1455,7 @@ def _get_initial_states(self, batchsize):
class GreedyMultiblankRNNTInfer(GreedyRNNTInfer):
"""A greedy transducer decoder for multi-blank RNN-T.

Sequence level greedy decoding, performed auto-repressively.
Sequence level greedy decoding, performed auto-regressively.

Args:
decoder_model: rnnt_utils.AbstractRNNTDecoder implementation.
Expand Down Expand Up @@ -1655,7 +1655,7 @@ def _greedy_decode(

class GreedyBatchedMultiblankRNNTInfer(GreedyBatchedRNNTInfer):
"""A batch level greedy transducer decoder.
Batch level greedy decoding, performed auto-repressively.
Batch level greedy decoding, performed auto-regressively.
Args:
decoder_model: rnnt_utils.AbstractRNNTDecoder implementation.
joint_model: rnnt_utils.AbstractRNNTJoint implementation.
Expand Down Expand Up @@ -2207,7 +2207,7 @@ class GreedyBatchedRNNTInferConfig:
class GreedyTDTInfer(_GreedyRNNTInfer):
"""A greedy TDT decoder.

Sequence level greedy decoding, performed auto-repressively.
Sequence level greedy decoding, performed auto-regressively.

Args:
decoder_model: rnnt_utils.AbstractRNNTDecoder implementation.
Expand Down Expand Up @@ -2289,7 +2289,7 @@ def forward(
partial_hypotheses: Optional[List[rnnt_utils.Hypothesis]] = None,
):
"""Returns a list of hypotheses given an input batch of the encoder hidden embedding.
Output token is generated auto-repressively.
Output token is generated auto-regressively.
Args:
encoder_output: A tensor of size (batch, features, timesteps).
encoded_lengths: list of int representing the length of each sequence
Expand Down Expand Up @@ -2459,7 +2459,7 @@ def _greedy_decode(

class GreedyBatchedTDTInfer(_GreedyRNNTInfer):
"""A batch level greedy TDT decoder.
Batch level greedy decoding, performed auto-repressively.
Batch level greedy decoding, performed auto-regressively.
Args:
decoder_model: rnnt_utils.AbstractRNNTDecoder implementation.
joint_model: rnnt_utils.AbstractRNNTJoint implementation.
Expand Down Expand Up @@ -2547,7 +2547,7 @@ def forward(
partial_hypotheses: Optional[List[rnnt_utils.Hypothesis]] = None,
):
"""Returns a list of hypotheses given an input batch of the encoder hidden embedding.
Output token is generated auto-repressively.
Output token is generated auto-regressively.
Args:
encoder_output: A tensor of size (batch, features, timesteps).
encoded_lengths: list of int representing the length of each sequence
Expand Down