Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Alit/mamba recipe #10935

Merged
merged 31 commits into from
Oct 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
e2a7a9f
add some mamba recipe
JRD971000 Oct 15, 2024
8172653
add 130m
JRD971000 Oct 15, 2024
ef694cf
add the rest of the recipes
JRD971000 Oct 15, 2024
f037204
add tokenizer
JRD971000 Oct 16, 2024
45bcfd6
add tokenizer
JRD971000 Oct 16, 2024
25bab1b
minor fix
JRD971000 Oct 16, 2024
ef9bcf7
minor fix
JRD971000 Oct 16, 2024
8e8caf5
minor fix
JRD971000 Oct 16, 2024
22b3f47
minor fix
JRD971000 Oct 16, 2024
294fdae
minor fix
JRD971000 Oct 16, 2024
d3188f5
minor fix
JRD971000 Oct 16, 2024
a82e4ee
minor fix
JRD971000 Oct 16, 2024
995655b
minor fix
JRD971000 Oct 16, 2024
c5edbc7
minor fix
JRD971000 Oct 16, 2024
b750d9a
minor fix
JRD971000 Oct 16, 2024
351484a
minor fix
JRD971000 Oct 16, 2024
dca8825
add fixes to ssm for nemorun recipes
JRD971000 Oct 17, 2024
44ccacc
add hybrid tokenizer
JRD971000 Oct 17, 2024
84cb0c0
updating some recipes
JRD971000 Oct 17, 2024
d37351c
Apply isort and black reformatting
JRD971000 Oct 17, 2024
d1d485f
remove comments
JRD971000 Oct 17, 2024
03076e3
update gbs
JRD971000 Oct 17, 2024
983f034
fix ckpt resume
JRD971000 Oct 18, 2024
72f9d84
fix ckpt resume
JRD971000 Oct 18, 2024
fc3b630
fix ckpt resume
JRD971000 Oct 18, 2024
5a88ae2
update recipes final
JRD971000 Oct 18, 2024
5386c4a
Apply isort and black reformatting
JRD971000 Oct 18, 2024
52bd642
Merge branch 'main' into alit/mamba_recipe
JRD971000 Oct 21, 2024
6bbb90b
remove redundant imports
JRD971000 Oct 21, 2024
dc8efb7
ckpt convertor dtype fix
JRD971000 Oct 21, 2024
b114bfc
Apply isort and black reformatting
JRD971000 Oct 21, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 13 additions & 1 deletion nemo/collections/llm/gpt/model/ssm.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,9 @@ class SSMConfig(TransformerConfig, io.IOMixin):
fp16_lm_cross_entropy: bool = False
parallel_output: bool = True
share_embeddings_and_output_weights: bool = False
params_dtype: torch.dtype = torch.bfloat16
fp16: bool = False
bf16: bool = True
num_layers: int = 2
mamba_ssm_ngroups: int = 8
num_attention_heads: int = 1
Expand Down Expand Up @@ -81,6 +84,7 @@ class SSMConfig(TransformerConfig, io.IOMixin):

forward_step_fn: Callable = ssm_forward_step
data_step_fn: Callable = gpt_data_step
tokenizer_model_path: str = None

def configure_model(self, tokenizer) -> "MCoreMambaModel":

Expand Down Expand Up @@ -127,9 +131,17 @@ def __init__(self, state_dict):
def state_dict(self):
return self._state_dict

def to(self, dtype):
for k, v in self._state_dict.items():
if v.dtype != dtype:
logging.warning(f"Converting {k} from {v.dtype} (source model) to {dtype} (target model)")
self._state_dict[k] = v.to(dtype)

source = ModelState(source)
target = self.init()
trainer = self.nemo_setup(target)
trainer = self.nemo_setup(target, ckpt_async_save=False)
source.to(self.config.params_dtype)
target.to(self.config.params_dtype)
self.convert_state(source, target)
self.nemo_save(output_path, trainer)

Expand Down
14 changes: 14 additions & 0 deletions nemo/collections/llm/recipes/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,13 @@
llama3_70b_16k,
llama3_70b_64k,
llama31_405b,
mamba2_1_3b,
mamba2_2_7b,
mamba2_8b,
mamba2_130m,
mamba2_370m,
mamba2_780m,
mamba2_hybrid_8b,
mistral_7b,
mistral_nemo_12b,
mixtral_8x7b,
Expand Down Expand Up @@ -49,6 +56,13 @@
"llama3_70b_16k",
"llama3_70b_64k",
"llama31_405b",
"mamba2_130m",
"mamba2_370m",
"mamba2_780m",
"mamba2_1_3b",
"mamba2_2_7b",
"mamba2_8b",
"mamba2_hybrid_8b",
"mistral_7b",
"mistral_nemo_12b",
"mixtral_8x7b",
Expand Down
321 changes: 321 additions & 0 deletions nemo/collections/llm/recipes/mamba2_130m.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,321 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Optional

import nemo_run as run
import pytorch_lightning as pl
import torch
from megatron.core.distributed import DistributedDataParallelConfig
from pytorch_lightning.callbacks.callback import Callback

from nemo import lightning as nl
from nemo.collections import llm
from nemo.collections.llm.api import finetune, pretrain
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.recipes.log.default import default_log, default_resume, tensorboard_logger
from nemo.collections.llm.recipes.optim.adam import distributed_fused_adam_with_cosine_annealing
from nemo.collections.llm.recipes.precision.mixed_precision import bf16_mixed
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
from nemo.utils.exp_manager import TimingCallback

NAME = "mamba2_130m"


@run.cli.factory(name=NAME)
def tokenizer(tokenizer_model: str = None) -> run.Config[pl.LightningModule]:

return run.Config(
get_nmt_tokenizer,
library='huggingface',
model_name="EleutherAI/gpt-neox-20b",
tokenizer_model=tokenizer_model,
use_fast=True,
)


@run.cli.factory(name=NAME)
def model(tokenizer_model: str = None) -> run.Config[pl.LightningModule]:
"""
Factory function to create a Mamba2 130M model configuration.

Returns:
run.Config[pl.LightningModule]: Configuration for the Mamba2 130M model.

Examples:
CLI usage:
$ nemo llm pretrain model=mamba2_130m ...

Python API usage:
>>> model_config = model()
>>> print(model_config)
"""
return run.Config(
llm.GPTModel, config=run.Config(llm.BaseMambaConfig130M), tokenizer=tokenizer(tokenizer_model=tokenizer_model)
)


def trainer(
tensor_parallelism: int = 1,
pipeline_parallelism: int = 1,
pipeline_parallelism_type: Optional[torch.dtype] = None,
virtual_pipeline_parallelism: Optional[int] = None,
context_parallelism: int = 1,
sequence_parallelism: bool = False,
num_nodes: int = 1,
num_gpus_per_node: int = 8,
max_steps: int = 1168251,
callbacks: Optional[list[run.Config[Callback]]] = None,
) -> run.Config[nl.Trainer]:
"""
Configure the NeMo Lightning Trainer for Mamba2 130M model.

This function sets up the distributed training strategy and other training parameters.

Args:
tensor_parallelism (int): Degree of tensor model parallelism.
pipeline_parallelism (int): Degree of pipeline model parallelism.
pipeline_parallelism_type (Optional[torch.dtype]): Data type for pipeline parallelism.
virtual_pipeline_parallelism (Optional[int]): Size of virtual pipeline parallelism.
context_parallelism (int): Degree of context parallelism.
sequence_parallelism (bool): Whether to use sequence parallelism.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
max_steps (int): Maximum number of training steps.
callbacks (Optional[list[run.Config[Callback]]]): List of callback configurations.

Returns:
run.Config[nl.Trainer]: Configuration for the NeMo Lightning Trainer.

Examples:
CLI usage:
$ nemo llm pretrain trainer=mamba2_130m ...

Python API usage:
>>> trainer_config = trainer(num_nodes=1, num_gpus_per_node=1)
>>> print(trainer_config)

Note:
For more information on distributed training strategies, refer to the
NeMo documentation on multi-GPU and multi-node training.
"""
strategy = run.Config(
nl.MegatronStrategy,
tensor_model_parallel_size=tensor_parallelism,
pipeline_model_parallel_size=pipeline_parallelism,
pipeline_dtype=pipeline_parallelism_type,
virtual_pipeline_model_parallel_size=virtual_pipeline_parallelism,
context_parallel_size=context_parallelism,
sequence_parallel=sequence_parallelism,
gradient_as_bucket_view=True,
ckpt_async_save=False,
ckpt_parallel_load=True,
ddp=run.Config(
DistributedDataParallelConfig,
check_for_nan_in_grad=True,
grad_reduce_in_fp32=True,
overlap_grad_reduce=True,
overlap_param_gather=True,
),
)

trainer = run.Config(
nl.Trainer,
accelerator="gpu",
accumulate_grad_batches=1,
callbacks=callbacks,
devices=num_gpus_per_node,
limit_test_batches=50,
limit_val_batches=32,
log_every_n_steps=10,
max_steps=max_steps,
num_nodes=num_nodes,
plugins=bf16_mixed(),
strategy=strategy,
use_distributed_sampler=False,
val_check_interval=2000,
)

return trainer


@run.cli.factory(target=pretrain, name=NAME)
def pretrain_recipe(
dir: Optional[str] = None,
name: str = "default",
tokenizer_model: str = None,
num_nodes: int = 1,
num_gpus_per_node: int = 8,
fn=pretrain,
) -> run.Partial:
"""
Create a pre-training recipe for Mamba2 130M model.

This function sets up a complete configuration for pre-training, including
model, trainer, data, logging, optimization, and resumption settings.

Args:
dir (Optional[str]): Directory for saving logs and checkpoints.
name (str): Name of the pre-training run.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
fn (Callable): The pre-training function to use.

Returns:
run.Partial: Partial configuration for pre-training.

Examples:
CLI usage:
$ nemo llm pretrain --factory mamba2_130M
$ nemo llm pretrain --factory "mamba2_130M(num_nodes=1, name='my_pretrain')"

Python API usage:
>>> recipe = pretrain_recipe(name="mamba2_130M_pretrain", num_nodes=1)
>>> print(recipe)

Note:
For more details on pre-training LLMs with NeMo, see the pre-training
guide in the `examples/llm/pretrain/` directory.
"""
return run.Partial(
fn,
model=model(),
trainer=trainer(
num_nodes=num_nodes,
num_gpus_per_node=num_gpus_per_node,
callbacks=[run.Config(TimingCallback)],
),
data=run.Config(
MockDataModule,
seq_length=4096,
global_batch_size=8,
micro_batch_size=1,
tokenizer=tokenizer(tokenizer_model=tokenizer_model),
),
log=default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)),
optim=distributed_fused_adam_with_cosine_annealing(max_lr=3e-4),
resume=default_resume(),
)


@run.cli.factory(target=finetune, name=NAME)
def finetune_recipe(
dir: Optional[str] = None,
name: str = "default",
resume_path: str = None,
tokenizer_model: str = None,
num_nodes: int = 1,
num_gpus_per_node: int = 8,
gbs: int = 8,
mbs: int = 1,
peft_scheme: Optional[str] = 'none',
) -> run.Partial:
"""
Create a fine-tuning recipe for Mamba2 130M model.

This function sets up a complete configuration for fine-tuning, including
model, trainer, data, logging, optimization, and resumption settings.

Args:
dir (Optional[str]): Directory for saving logs and checkpoints.
name (str): Name of the fine-tuning run.
resume_path (str): Path to the NeMo checkpoint (refer to notes below
on how to convert a pytorch checkpoint to NeMo)
tokenizer_model (str): Path to tokenizer model (defaults to None)
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
Returns:
run.Partial: Partial configuration for fine-tuning.

Examples:
CLI usage:
$ nemo llm finetune --factory mamba2_130m

Python API usage:
>>> recipe = finetune_recipe(name="mamba2_130m_finetune", num_nodes=1)
>>> print(recipe)

Note:
This recipe uses the SQuAD dataset for fine-tuning. For more information
on fine-tuning LLMs with NeMo, see the fine-tuning guide in the
`examples/llm/finetune/` directory.
For converting an SSM pytorch checkpoint, use the following line of python code:

llm.GPTModel(llm.BaseMambaConfig130M(), tokenizer=tokenizer()).import_ckpt(
path="pytorch://ABSOLUTE_PATH_TO_CKPT/your_pytorch_state_dict_file",
model_config=llm.BaseMambaConfig130M())
This line will cache the nemo checkpoint to following directory:
/root/.cache/nemo/models/your_pytorch_state_dict_file

"""
nemo_resume = run.Config(
nl.AutoResume,
restore_config=run.Config(nl.RestoreConfig, path=resume_path),
)
strategy = run.Config(
nl.MegatronStrategy,
tensor_model_parallel_size=1,
pipeline_model_parallel_size=1,
gradient_as_bucket_view=True,
ckpt_load_optimizer=False,
ckpt_save_optimizer=False,
ckpt_async_save=False,
)
checkpoint_callback = run.Config(
nl.ModelCheckpoint,
every_n_train_steps=10,
dirpath=dir,
)
trainer = run.Config(
nl.Trainer,
accelerator="gpu",
accumulate_grad_batches=1,
devices=num_gpus_per_node,
limit_test_batches=10,
limit_val_batches=10,
log_every_n_steps=20,
max_steps=100,
num_nodes=num_nodes,
plugins=run.Config(
nl.MegatronMixedPrecision,
precision="bf16-mixed",
params_dtype=torch.bfloat16,
),
callbacks=[checkpoint_callback],
strategy=strategy,
use_distributed_sampler=False,
val_check_interval=20,
)
recipe = run.Partial(
llm.finetune,
model=model(tokenizer_model=tokenizer_model),
trainer=trainer,
data=run.Config(
llm.SquadDataModule,
seq_length=2048,
global_batch_size=gbs,
micro_batch_size=mbs,
tokenizer=tokenizer(tokenizer_model=tokenizer_model),
),
log=llm.default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)),
optim=distributed_fused_adam_with_cosine_annealing(max_lr=1e-4, min_lr=0, warmup_steps=50),
resume=nemo_resume,
)
if peft_scheme is None or peft_scheme.lower() == 'none':
recipe.trainer.strategy.tensor_model_parallel_size = 1
recipe.optim.config.lr = 5e-6
else:
raise ValueError(f"Unrecognized peft scheme: {peft_scheme}")
return recipe
Loading
Loading