Skip to content

Commit

Permalink
Support for finetuning and finetuning inference with .ckpt files & ba…
Browse files Browse the repository at this point in the history
…tch size refactoring (#5339)

* Initial refactor

Signed-off-by: MaximumEntropy <[email protected]>

* Resolve config before passing to load_from_checkpoint

Signed-off-by: MaximumEntropy <[email protected]>

* Fixes for model parallel and nemo restore

Signed-off-by: MaximumEntropy <[email protected]>

* Fixes for eval

Signed-off-by: MaximumEntropy <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Revert config changes

Signed-off-by: MaximumEntropy <[email protected]>

* Refactor

Signed-off-by: MaximumEntropy <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix typo

Signed-off-by: MaximumEntropy <[email protected]>

* Remove comments

Signed-off-by: MaximumEntropy <[email protected]>

* Minor

Signed-off-by: MaximumEntropy <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fix validation reconfiguration

Signed-off-by: MaximumEntropy <[email protected]>

* Remove old comment

Signed-off-by: MaximumEntropy <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fixes for test_ds

Signed-off-by: MaximumEntropy <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

Signed-off-by: MaximumEntropy <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
2 people authored and tango4j committed Nov 17, 2022
1 parent a2145ba commit 4d7b8cf
Show file tree
Hide file tree
Showing 9 changed files with 270 additions and 196 deletions.
8 changes: 6 additions & 2 deletions examples/nlp/language_modeling/conf/megatron_t0_config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,11 @@ exp_manager:
save_best_model: True

model:
restore_from_path: ??? # Path to a trained T5 or LM-adapted T5 .nemo file
restore_from_path: null # Path to a trained T5 .nemo file
pretrained_checkpoint:
checkpoint_dir: null # Path to a folder that contains a .ckpt file
checkpoint_name: null # Name of the .ckpt file within the checkpoint_dir.
hparams_file: null # Path to a .yaml file that contains the hyperparameters of the checkpoint.
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 1
pipeline_model_parallel_split_rank: 0
Expand Down Expand Up @@ -82,7 +86,7 @@ model:
num_classes: null
replace_bos_with_pad: ${data.train_ds.replace_bos_with_pad}
add_bos_to_input: ${data.train_ds.add_bos_to_input}
add_eos_to_input: ${data.train_ds.replace_bos_with_pad}
add_eos_to_input: ${data.train_ds.add_eos_to_input}
seed: 1234

optim:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,11 @@ exp_manager:
create_checkpoint_callback: False

model:
restore_from_path: ??? # Path to a finetuned T5 .nemo file
restore_from_path: null # Path to a trained T5 .nemo file
pretrained_checkpoint:
checkpoint_dir: null # Path to a folder that contains a .ckpt file
checkpoint_name: null # Name of the .ckpt file within the checkpoint_dir.
hparams_file: null # Path to a .yaml file that contains the hyperparameters of the checkpoint.
gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
megatron_amp_O2: False # Enable O2 optimization for megatron amp

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,16 @@ exp_manager:
create_checkpoint_callback: False

model:
restore_from_path: ??? # Path to a finetuned T5 .nemo file
restore_from_path: null # Path to a trained T5 .nemo file
pretrained_checkpoint:
checkpoint_dir: null # Path to a folder that contains a .ckpt file
checkpoint_name: null # Name of the .ckpt file within the checkpoint_dir.
hparams_file: null # Path to a .yaml file that contains the hyperparameters of the checkpoint.
gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
megatron_amp_O2: False # Enable O2 optimization for megatron amp
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 1
pipeline_model_parallel_split_rank: 0

data:
validation_ds:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,11 @@ exp_manager:
save_best_model: True

model:
restore_from_path: ??? # Path to a trained T5 .nemo file
restore_from_path: null # Path to a trained T5 .nemo file
pretrained_checkpoint:
checkpoint_dir: null # Path to a folder that contains a .ckpt file
checkpoint_name: null # Name of the .ckpt file within the checkpoint_dir.
hparams_file: null # Path to a .yaml file that contains the hyperparameters of the checkpoint.
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 1
pipeline_model_parallel_split_rank: 0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,13 @@ exp_manager:
save_best_model: True

model:
restore_from_path: ???
restore_from_path: null # Path to a trained T5 .nemo file
pretrained_checkpoint:
checkpoint_dir: null # Path to a folder that contains a .ckpt file
checkpoint_name: null # Name of the .ckpt file within the checkpoint_dir.
hparams_file: null # Path to a .yaml file that contains the hyperparameters of the checkpoint.
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 2
pipeline_model_parallel_size: 1
pipeline_model_parallel_split_rank: 1
gradient_as_bucket_view: True # Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
resume_from_checkpoint: null
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,11 @@ exp_manager:
save_best_model: True

model:
restore_from_path: ??? # Path to a trained T5 .nemo file
restore_from_path: null # Path to a trained T5 .nemo file
pretrained_checkpoint:
checkpoint_dir: null # Path to a folder that contains a .ckpt file
checkpoint_name: null # Name of the .ckpt file within the checkpoint_dir.
hparams_file: null # Path to a .yaml file that contains the hyperparameters of the checkpoint.
tensor_model_parallel_size: 1
pipeline_model_parallel_size: 1
pipeline_model_parallel_split_rank: 0
Expand Down
119 changes: 64 additions & 55 deletions examples/nlp/language_modeling/megatron_t5_seq2seq_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from megatron_t5_seq2seq_finetune import load_from_checkpoint_dir, load_from_nemo, validate_checkpoint_loading_args
from omegaconf.omegaconf import OmegaConf, open_dict
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks.timer import Timer
Expand All @@ -21,17 +22,51 @@
from nemo.collections.nlp.models.language_modeling.megatron_finetune_model import MegatronT5FinetuneModel
from nemo.collections.nlp.models.language_modeling.megatron_glue_model import MegatronT5GLUEModel
from nemo.collections.nlp.models.language_modeling.megatron_t0_model import MegatronT0Model
from nemo.collections.nlp.parts.nlp_overrides import (
GradScaler,
MegatronHalfPrecisionPlugin,
NLPDDPStrategy,
NLPSaveRestoreConnector,
)
from nemo.collections.nlp.parts.nlp_overrides import GradScaler, MegatronHalfPrecisionPlugin, NLPDDPStrategy
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.exp_manager import StatelessTimer, exp_manager


def _modify_config(t5_cfg, cfg, add_cfg_to_tree=False):
"""
This function modifies the original t5 pre-training config (t5_cfg) with attributes from the finetuning config (cfg).
The `add_cfg_to_tree` arg adds `cfg` to the top of the yaml tree which is needed for all `hparams.yaml` files when passed as an arg to `load_from_checkpoint()`.
"""
OmegaConf.set_struct(t5_cfg, True)
with open_dict(t5_cfg):
t5_cfg.precision = cfg.trainer.precision
# Overwrite data configs
if cfg.model.data.validation_ds.get('src_file_name', None) is not None:
logging.info(
'Found validation_ds.src_file_name in the config file. Overriding the finetuned model config file with the values from the new config file.'
)
t5_cfg.data.validation_ds.src_file_name = cfg.model.data.validation_ds.src_file_name
if cfg.model.data.validation_ds.get('tgt_file_name', None) is not None:
logging.info(
'Found validation_ds.tgt_file_name in the config file. Overriding the finetuned model config file with the values from the new config file.'
)
t5_cfg.data.validation_ds.tgt_file_name = cfg.model.data.validation_ds.tgt_file_name

if "write_predictions_to_file" in cfg.model.data.validation_ds:
t5_cfg.data.validation_ds.write_predictions_to_file = (
cfg.model.data.validation_ds.write_predictions_to_file
)
if "output_file_path_prefix" in cfg.model.data.validation_ds:
t5_cfg.data.validation_ds.output_file_path_prefix = cfg.model.data.validation_ds.output_file_path_prefix

t5_cfg.data.validation_ds.micro_batch_size = cfg.model.data.validation_ds.micro_batch_size
t5_cfg.data.validation_ds.global_batch_size = cfg.model.data.validation_ds.global_batch_size

# This is needed when modifying a hparam file directly to load `.ckpt` files.
# This is not needed to modify the cfg in `.nemo` files.
if add_cfg_to_tree:
OmegaConf.resolve(t5_cfg)
t5_cfg.cfg = t5_cfg

return t5_cfg


@hydra_runner(config_path="conf", config_name="megatron_t5_config_finetune_glue_eval")
def main(cfg) -> None:
logging.info("\n\n************** Experiment configuration ***********")
Expand Down Expand Up @@ -69,59 +104,33 @@ def main(cfg) -> None:
if isinstance(callback, Timer):
trainer.callbacks[idx] = StatelessTimer(cfg.trainer.max_time,)

t5_cfg = MegatronT5GLUEModel.restore_from(
restore_path=cfg.model.restore_from_path, trainer=trainer, return_config=True
)

# Override the T5 configuration with the one from the config file.
# NOTE: Only data can be overriden here since this the file being restored here should already correspond to a GLUE/XNLI finetuned model.
OmegaConf.set_struct(t5_cfg, True)
with open_dict(t5_cfg):
t5_cfg.precision = cfg.trainer.precision
# Overwrite data configs
if cfg.model.data.validation_ds.get('src_file_name', None) is not None:
logging.info(
'Found validation_ds.src_file_name in the config file. Overriding the finetuned model config file with the values from the new config file.'
if hasattr(cfg.model.data.validation_ds, 'task_name'):
if cfg.model.restore_from_path:
t5_cfg = MegatronT5GLUEModel.restore_from(
restore_path=cfg.model.restore_from_path, trainer=trainer, return_config=True
)
t5_cfg.data.validation_ds.src_file_name = cfg.model.data.validation_ds.src_file_name
if cfg.model.data.validation_ds.get('tgt_file_name', None) is not None:
logging.info(
'Found validation_ds.tgt_file_name in the config file. Overriding the finetuned model config file with the values from the new config file.'
)
t5_cfg.data.validation_ds.tgt_file_name = cfg.model.data.validation_ds.tgt_file_name

if "write_predictions_to_file" in cfg.model.data.validation_ds:
t5_cfg.data.validation_ds.write_predictions_to_file = (
cfg.model.data.validation_ds.write_predictions_to_file
)
if "output_file_path_prefix" in cfg.model.data.validation_ds:
t5_cfg.data.validation_ds.output_file_path_prefix = cfg.model.data.validation_ds.output_file_path_prefix
t5_cfg.data.validation_ds.src_file_name = cfg.model.data.validation_ds.src_file_name

t5_cfg.data.validation_ds.micro_batch_size = cfg.model.data.validation_ds.micro_batch_size
t5_cfg.data.validation_ds.global_batch_size = cfg.model.data.validation_ds.global_batch_size

if hasattr(cfg.model.data.validation_ds, 'task_name'):
model = MegatronT5GLUEModel.restore_from(
restore_path=cfg.model.restore_from_path,
trainer=trainer,
override_config_path=t5_cfg,
save_restore_connector=NLPSaveRestoreConnector(),
)
elif hasattr(cfg.model.data.validation_ds, 'file_names'):
model = MegatronT0Model.restore_from(
restore_path=cfg.model.restore_from_path,
trainer=trainer,
override_config_path=t5_cfg,
save_restore_connector=NLPSaveRestoreConnector(),
model = load_from_nemo(MegatronT5GLUEModel, cfg, trainer, t5_cfg, modify_confg_fn=_modify_config)
else:
validate_checkpoint_loading_args(cfg.model.pretrained_checkpoint)
model = load_from_checkpoint_dir(MegatronT5GLUEModel, cfg, trainer, modify_confg_fn=_modify_config)
elif hasattr(cfg.model.data.validation_ds, 'file_names'):
if cfg.model.restore_from_path:
t5_cfg = MegatronT0Model.restore_from(
restore_path=cfg.model.restore_from_path, trainer=trainer, return_config=True
)
model = load_from_nemo(MegatronT0Model, cfg, trainer, t5_cfg, modify_confg_fn=_modify_config)
else:
model = MegatronT5FinetuneModel.restore_from(
restore_path=cfg.model.restore_from_path,
trainer=trainer,
override_config_path=t5_cfg,
save_restore_connector=NLPSaveRestoreConnector(),
validate_checkpoint_loading_args(cfg.model.pretrained_checkpoint)
model = load_from_checkpoint_dir(MegatronT0Model, cfg, trainer, modify_confg_fn=_modify_config)
else:
if cfg.model.restore_from_path:
t5_cfg = MegatronT5FinetuneModel.restore_from(
restore_path=cfg.model.restore_from_path, trainer=trainer, return_config=True
)
model = load_from_nemo(MegatronT5FinetuneModel, cfg, trainer, modify_confg_fn=_modify_config)
else:
validate_checkpoint_loading_args(cfg.model.pretrained_checkpoint)
model = load_from_checkpoint_dir(MegatronT5FinetuneModel, cfg, trainer, modify_confg_fn=_modify_config)

model.freeze()
trainer.validate(model)
Expand Down
Loading

0 comments on commit 4d7b8cf

Please sign in to comment.