-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Yang Zhang <[email protected]>
- Loading branch information
Showing
4 changed files
with
275 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# ! /usr/bin/python | ||
# -*- coding: utf-8 -*- | ||
|
||
# Copyright 2020 NVIDIA. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================= | ||
|
||
from typing import List | ||
|
||
import numpy as np | ||
import torch | ||
|
||
from nemo import logging | ||
from nemo.backends.pytorch.nm import DataLayerNM | ||
from nemo.core.neural_types import * | ||
|
||
__all__ = ['MultiDataLayer'] | ||
|
||
|
||
class MultiDataLayer(DataLayerNM): | ||
def __init__( | ||
self, | ||
data_layers: List[DataLayerNM], | ||
batch_size: int, | ||
shuffle: bool = False, | ||
combination_mode: str = "cross_product", | ||
port_names: List[str] = None, | ||
): | ||
""" | ||
data_layers: (list) of DataLayerNM objects | ||
batch_size: (int) batchsize when the underlying dataset is loaded | ||
combination_mode: (str) defines how to combine the datasets, Options are ["cross_product", "zip"]. | ||
shuffle: (bool) whether underlying multi dataset should be shuffled in each epoch | ||
port_names: List(str) user can override all port names if specified | ||
""" | ||
super().__init__() | ||
self._data_layers = data_layers | ||
self._batch_size = batch_size | ||
self._shuffle = shuffle | ||
self._combination_mode = combination_mode | ||
self._port_names = port_names | ||
self._dataset = MultiDataset( | ||
datasets=[dl.dataset for dl in self._data_layers], combination_mode=combination_mode | ||
) | ||
|
||
total_num_port = sum([len(dl.output_ports) for dl in self._data_layers]) | ||
self._ports = dict() | ||
if self._port_names: | ||
assert (len(self._port_names) == total_num_port, "Number of ports is does not match.") | ||
i = 0 | ||
for dl in self._data_layers: | ||
for _, port_type in dl.output_ports.items(): | ||
self._ports[self._port_names[i]] = port_type | ||
i += 1 | ||
else: | ||
for dl_idx, dl in enumerate(self._data_layers): | ||
for port_name, port_type in dl.output_ports.items(): | ||
if port_name in self._ports: | ||
logging.warning(f"name collision {port_name}, will rename") | ||
self._ports[f"{port_name}_{dl_idx}"] = port_type | ||
else: | ||
self._ports[port_name] = port_type | ||
|
||
@property | ||
def output_ports(self): | ||
"""Return: dict | ||
Returns union of all individual data_layer output ports | ||
In case of name collision, resolve by renaming | ||
""" | ||
return self._ports | ||
|
||
def __len__(self): | ||
return len(self._dataset) | ||
|
||
@property | ||
def dataset(self): | ||
return self._dataset | ||
|
||
@property | ||
def data_iterator(self): | ||
return None | ||
|
||
|
||
class MultiDataset(torch.utils.data.Dataset): | ||
def __init__(self, datasets: List[torch.utils.data.Dataset], combination_mode: str = "cross_product"): | ||
""" | ||
Datasets: list of torch.utils.data.Dataset objects. | ||
combination_mode: str, defines how to combine the datasets, Options are ["cross_product", "zip"]. | ||
""" | ||
self.datasets = datasets | ||
self.combination_mode = combination_mode | ||
self.len = None | ||
|
||
def __getitem__(self, i): | ||
""" | ||
Returns tuple (x1, x2, ...xn) where x1 \in D1, x2 \in D2, ...xn\ Dn | ||
""" | ||
|
||
return [x for d in self.datasets for x in d[i % len(d)]] | ||
|
||
def __len__(self): | ||
""" | ||
Returns length of this dataset (int). | ||
In case of combination_mode="cross_product" this would be prod(len(d) for d in self.datasets). | ||
In case of combination_mode="zip" this would be min(len(d) for d in self.datasets) given that all datasets have same length. | ||
""" | ||
if not self.len: | ||
if self.combination_mode == "cross_product": | ||
self.len = np.prod([len(d) for d in self.datasets]) | ||
elif self.combination_mode == "zip": | ||
ds_lens = [len(d) for d in self.datasets] | ||
self.len = np.min(ds_lens) | ||
if not np.all(ds_lens): | ||
logging.warning("datasets do not have equal lengths and will be pruned to the shortest length.") | ||
else: | ||
raise ValueError("combination_mode unknown") | ||
return self.len |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
# ! /usr/bin/python | ||
# -*- coding: utf-8 -*- | ||
|
||
# Copyright 2020 NVIDIA. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================= | ||
|
||
import os | ||
import shutil | ||
from unittest import TestCase | ||
|
||
import pytest | ||
import torch | ||
|
||
import nemo | ||
from nemo.core import ChannelType, LabelsType, MaskType, NeuralType | ||
|
||
logging = nemo.logging | ||
|
||
|
||
@pytest.mark.usefixtures("neural_factory") | ||
class TestMultiDL(TestCase): | ||
@classmethod | ||
def setUpClass(cls) -> None: | ||
super().setUpClass() | ||
|
||
@pytest.mark.unclassified | ||
def test_port_name_collision_handling(self): | ||
batch_size = 4 | ||
dataset_size = 4 | ||
shuffle = False | ||
dl_1 = nemo.backends.pytorch.common.ZerosDataLayer( | ||
size=dataset_size, | ||
dtype=torch.FloatTensor, | ||
batch_size=batch_size, | ||
output_ports={"a": NeuralType(('B', 'T'), ChannelType()), "b": NeuralType(('B', 'T'), ChannelType())}, | ||
) | ||
dl_2 = nemo.backends.pytorch.common.ZerosDataLayer( | ||
size=dataset_size, | ||
dtype=torch.FloatTensor, | ||
batch_size=batch_size, | ||
output_ports={"a": NeuralType(('B', 'T'), ChannelType()), "c": NeuralType(('B', 'T'), ChannelType())}, | ||
) | ||
|
||
data_layer = nemo.backends.pytorch.common.MultiDataLayer( | ||
data_layers=[dl_1, dl_2], batch_size=batch_size, shuffle=shuffle, combination_mode="cross_product" | ||
) | ||
self.assertEqual([*data_layer.output_ports], ["a", "b", "a_1", "c"]) | ||
self.assertEqual(len(data_layer), dataset_size * dataset_size) | ||
|
||
@pytest.mark.unclassified | ||
def test_port_renaming(self): | ||
batch_size = 4 | ||
dataset_size = 4 | ||
shuffle = False | ||
dl_1 = nemo.backends.pytorch.common.ZerosDataLayer( | ||
size=dataset_size, | ||
dtype=torch.FloatTensor, | ||
batch_size=batch_size, | ||
output_ports={"a": NeuralType(('B', 'T'), ChannelType()), "b": NeuralType(('B', 'T'), ChannelType())}, | ||
) | ||
dl_2 = nemo.backends.pytorch.common.ZerosDataLayer( | ||
size=dataset_size, | ||
dtype=torch.FloatTensor, | ||
batch_size=batch_size, | ||
output_ports={"a": NeuralType(('B', 'T'), ChannelType()), "b": NeuralType(('B', 'T'), ChannelType())}, | ||
) | ||
|
||
data_layer = nemo.backends.pytorch.common.MultiDataLayer( | ||
data_layers=[dl_1, dl_2], | ||
batch_size=batch_size, | ||
shuffle=shuffle, | ||
combination_mode="cross_product", | ||
port_names=["1", "2", "3", "4"], | ||
) | ||
self.assertEqual([*data_layer.output_ports], ["1", "2", "3", "4"]) | ||
|
||
@pytest.mark.unclassified | ||
def test_multi_dl_zip(self): | ||
batch_size = 4 | ||
dataset_size_0 = 4 | ||
dataset_size_1 = 5 | ||
shuffle = False | ||
dl_1 = nemo.backends.pytorch.common.ZerosDataLayer( | ||
size=dataset_size_0, | ||
dtype=torch.FloatTensor, | ||
batch_size=batch_size, | ||
output_ports={"a": NeuralType(('B', 'T'), ChannelType()), "b": NeuralType(('B', 'T'), ChannelType())}, | ||
) | ||
dl_2 = nemo.backends.pytorch.common.ZerosDataLayer( | ||
size=dataset_size_1, | ||
dtype=torch.FloatTensor, | ||
batch_size=batch_size, | ||
output_ports={"a": NeuralType(('B', 'T'), ChannelType()), "c": NeuralType(('B', 'T'), ChannelType())}, | ||
) | ||
|
||
data_layer = nemo.backends.pytorch.common.MultiDataLayer( | ||
data_layers=[dl_1, dl_2], batch_size=batch_size, shuffle=shuffle, combination_mode="zip" | ||
) | ||
self.assertEqual(len(data_layer), dataset_size_0) | ||
|
||
@pytest.mark.unclassified | ||
def test_pipeline(self): | ||
batch_size = 4 | ||
dataset_size_0 = 100 | ||
dataset_size_1 = 100 | ||
shuffle = False | ||
dl_1 = nemo.backends.pytorch.tutorials.RealFunctionDataLayer(batch_size=batch_size, n=dataset_size_0) | ||
dl_2 = nemo.backends.pytorch.tutorials.RealFunctionDataLayer(batch_size=batch_size, n=dataset_size_1) | ||
|
||
data_layer = nemo.backends.pytorch.common.MultiDataLayer( | ||
data_layers=[dl_1, dl_2], batch_size=batch_size, shuffle=shuffle, combination_mode="zip" | ||
) | ||
x_0, y_0, x_1, y_1 = data_layer() | ||
|
||
trainable_module = nemo.backends.pytorch.tutorials.TaylorNet(dim=4) | ||
loss = nemo.backends.pytorch.tutorials.MSELoss() | ||
combined_loss = nemo.backends.pytorch.common.losses.LossAggregatorNM(num_inputs=2) | ||
pred_0 = trainable_module(x=x_0) | ||
pred_1 = trainable_module(x=x_1) | ||
l_0 = loss(predictions=pred_0, target=y_0) | ||
l_1 = loss(predictions=pred_1, target=y_1) | ||
total_loss = combined_loss(loss_1=l_0, loss_2=l_1) | ||
|
||
callback = nemo.core.SimpleLossLoggerCallback( | ||
tensors=[total_loss], print_func=lambda x: logging.info(f'Train Loss: {str(x[0].item())}'), | ||
) | ||
# Instantiate an optimizer to perform `train` action | ||
optimizer = nemo.backends.pytorch.actions.PtActions() | ||
optimizer.train( | ||
tensors_to_optimize=[total_loss], optimizer="sgd", optimization_params={"lr": 0.0003, "num_epochs": 1}, | ||
) |