Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Session-based example using dressipi dataset and XLNet architecture #849

Merged
merged 30 commits into from
Nov 24, 2022

Conversation

rnyak
Copy link
Contributor

@rnyak rnyak commented Nov 2, 2022

This PR is addressing session-based example creation task in #734.

Currently

  • This PR modifies the existing session-based example notebook. We could remove the custom biLSTM class and we can directly use tf.keras.layers.Bidirectional instead.
  • we can run XLNET architecture however weight-tying and loader does not work properly (see blockers below) unless we go with workaround solutions.

Blockers:
we need these two tickets to be solved

@review-notebook-app
Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 72a64f478e0208b520c4a121b11e1ac7710cdcee, no merge conflicts.
Running as SYSTEM
Setting status of 72a64f478e0208b520c4a121b11e1ac7710cdcee to PENDING with url https://10.20.13.93:8080/job/merlin_models/1701/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 72a64f478e0208b520c4a121b11e1ac7710cdcee^{commit} # timeout=10
Checking out Revision 72a64f478e0208b520c4a121b11e1ac7710cdcee (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 72a64f478e0208b520c4a121b11e1ac7710cdcee # timeout=10
Commit message: "session-based example with Transformer"
 > git rev-list --no-walk e839e2b5fbcac6d03199493b1c33fc12a967fdde # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins13504666351335199062.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
test-gpu inst-nodeps: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/1/merlin-models-0.9.0+24.g72a64f47.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.0,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,boto3==1.24.75,botocore==1.29.0,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.8.2,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader @ git+https://github.com/NVIDIA-Merlin/dataloader.git@5905283777ff5ebd748a1c91b7c9fde5710ae775,merlin-models==0.9.0+24.g72a64f47,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.982,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.1,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.3.2,QtPy==2.2.1,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.42,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.0,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
test-gpu run-test-pre: PYTHONHASHSEED='4022098995'
test-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-j0uu1dri
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-j0uu1dri
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 563be4bf5ef675940d5fff2b5e4666424a7f7947
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+5.g563be4b) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+5.g563be4b) (21.3)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+5.g563be4b) (1.10.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+5.g563be4b) (4.64.1)
Requirement already satisfied: dask>=2022.3.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-core==0.8.0+5.g563be4b) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+5.g563be4b) (7.0.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+5.g563be4b) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+5.g563be4b) (1.3.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+5.g563be4b) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+5.g563be4b) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+5.g563be4b) (1.2.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+5.g563be4b) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+5.g563be4b) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (1.2.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/test-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (5.8.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (1.7.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (2.0.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (3.1.2)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+5.g563be4b) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+5.g563be4b) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+5.g563be4b) (59.8.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+5.g563be4b) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+5.g563be4b) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+5.g563be4b) (2.8.2)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+5.g563be4b) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+5.g563be4b) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+5.g563be4b) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+5.g563be4b) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+5.g563be4b) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+5.g563be4b) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+5.g563be4b) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+5.g563be4b) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3
[notice] To update, run: pip install --upgrade pip
test-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-v_ksdp0c
Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-v_ksdp0c
Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit 59579f2c46006fcb22795623ee9400c658166670
Installing build dependencies: started
Installing build dependencies: finished with status 'done'
Getting requirements to build wheel: started
Getting requirements to build wheel: finished with status 'done'
Preparing metadata (pyproject.toml): started
Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+2.g59579f2c) (1.8.1)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+2.g59579f2c) (0.8.0+5.g563be4b)
Requirement already satisfied: merlin-dataloader>=0.0.2 in ./.tox/test-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+2.g59579f2c) (0.0.2+1.g5905283)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (21.3)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.10.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (4.64.1)
Requirement already satisfied: dask>=2022.3.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (7.0.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.3.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.2.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+2.g59579f2c) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.2.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/test-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (5.8.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.7.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2.0.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (3.1.2)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (59.8.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2.8.2)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+2.g59579f2c) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3
[notice] To update, run: pip install --upgrade pip
test-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/test-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 833 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ................................. [ 12%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 16%]
..................... [ 19%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 19%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 19%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 21%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 21%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 21%]
tests/unit/tf/core/test_aggregation.py ......... [ 22%]
tests/unit/tf/core/test_base.py .. [ 22%]
tests/unit/tf/core/test_combinators.py s.................... [ 25%]
tests/unit/tf/core/test_encoder.py .. [ 25%]
tests/unit/tf/core/test_index.py ... [ 25%]
tests/unit/tf/core/test_prediction.py .. [ 26%]
tests/unit/tf/core/test_tabular.py ...... [ 26%]
tests/unit/tf/examples/test_01_getting_started.py . [ 27%]
tests/unit/tf/examples/test_02_dataschema.py . [ 27%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 27%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 27%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 27%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 27%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 27%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 27%]
[ 27%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 27%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py F [ 28%]
[ 28%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 28%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 28%]
tests/unit/tf/inputs/test_continuous.py ....... [ 29%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 33%]
........ [ 34%]
tests/unit/tf/inputs/test_tabular.py .................. [ 36%]
tests/unit/tf/layers/test_queue.py .............. [ 37%]
tests/unit/tf/losses/test_losses.py ....................... [ 40%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 41%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 44%]
tests/unit/tf/models/test_base.py s........................ [ 47%]
tests/unit/tf/models/test_benchmark.py .. [ 47%]
tests/unit/tf/models/test_ranking.py .................................. [ 51%]
tests/unit/tf/models/test_retrieval.py ................................. [ 55%]
.......................................... [ 60%]
tests/unit/tf/outputs/test_base.py ...... [ 61%]
tests/unit/tf/outputs/test_classification.py ...... [ 62%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 63%]
tests/unit/tf/outputs/test_regression.py .. [ 63%]
tests/unit/tf/outputs/test_sampling.py .... [ 64%]
tests/unit/tf/outputs/test_topk.py . [ 64%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 64%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 66%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 67%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 67%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 68%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 68%]
tests/unit/tf/transformers/test_block.py ..................... [ 71%]
tests/unit/tf/transformers/test_transforms.py .......... [ 72%]
tests/unit/tf/transforms/test_bias.py .. [ 72%]
tests/unit/tf/transforms/test_features.py s............................. [ 76%]
.......................s...... [ 79%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 81%]
tests/unit/tf/transforms/test_noise.py ..... [ 81%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 84%]
tests/unit/tf/utils/test_batch.py .... [ 84%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 85%]
tests/unit/torch/test_dataset.py ......... [ 86%]
tests/unit/torch/test_public_api.py . [ 86%]
tests/unit/torch/block/test_base.py .... [ 87%]
tests/unit/torch/block/test_mlp.py . [ 87%]
tests/unit/torch/features/test_continuous.py .. [ 87%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 89%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 91%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 92%]
tests/unit/torch/tabular/test_transformations.py ....... [ 93%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f81c63a4520>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f81c63a4520>
cell = {'cell_type': 'code', 'execution_count': 45, 'id': '337e6653-38a7-4a9e-b300-46bd0213b30e', 'metadata': {'execution': {... learning_rate=LEARNING_RATE\n)\nmodel.compile(run_eagerly=False, optimizer=optimizer)\nmodel.fit(loader, epochs=2)'}
cell_index = 87
exec_reply = {'buffers': [], 'content': {'ename': 'InvalidArgumentError', 'engine_info': {'engine_id': -1, 'engine_uuid': 'b899595a...e, 'engine': 'b899595a-7ac6-418b-8586-2a51026bc62b', 'started': '2022-11-02T15:51:14.541885Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E optimizer = tf.keras.optimizers.Adam(
E learning_rate=LEARNING_RATE
E )
E model.compile(run_eagerly=False, optimizer=optimizer)
E model.fit(loader, epochs=2)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInvalidArgumentError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [45], line 5�[0m
E �[1;32m 1�[0m optimizer �[38;5;241m=�[39m tf�[38;5;241m.�[39mkeras�[38;5;241m.�[39moptimizers�[38;5;241m.�[39mAdam(
E �[1;32m 2�[0m learning_rate�[38;5;241m=�[39mLEARNING_RATE
E �[1;32m 3�[0m )
E �[1;32m 4�[0m model�[38;5;241m.�[39mcompile(run_eagerly�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, optimizer�[38;5;241m=�[39moptimizer)
E �[0;32m----> 5�[0m �[43mmodel�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mloader�[49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m2�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:856�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 853�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 854�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 856�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 858�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 859�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1107�[0m, in �[0;36mModel.call�[0;34m(self, inputs, targets, training, testing, output_context)�[0m
E �[1;32m 1104�[0m outputs, context �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_call_child(�[38;5;28mself�[39m�[38;5;241m.�[39mpre, outputs, context)
E �[1;32m 1106�[0m �[38;5;28;01mfor�[39;00m block �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mblocks:
E �[0;32m-> 1107�[0m outputs, context �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_call_child�[49m�[43m(�[49m�[43mblock�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mcontext�[49m�[43m)�[49m
E �[1;32m 1109�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mpost:
E �[1;32m 1110�[0m outputs, context �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_call_child(�[38;5;28mself�[39m�[38;5;241m.�[39mpost, outputs, context)
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1136�[0m, in �[0;36mModel._call_child�[0;34m(self, child, inputs, context)�[0m
E �[1;32m 1133�[0m �[38;5;28;01mif�[39;00m �[38;5;28many�[39m(�[38;5;28misinstance�[39m(sub, ModelBlock) �[38;5;28;01mfor�[39;00m sub �[38;5;129;01min�[39;00m child�[38;5;241m.�[39msubmodules):
E �[1;32m 1134�[0m �[38;5;28;01mdel�[39;00m call_kwargs[�[38;5;124m"�[39m�[38;5;124mfeatures�[39m�[38;5;124m"�[39m]
E �[0;32m-> 1136�[0m outputs �[38;5;241m=�[39m �[43mcall_layer�[49m�[43m(�[49m�[43mchild�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mcall_kwargs�[49m�[43m)�[49m
E �[1;32m 1137�[0m �[38;5;28;01mif�[39;00m �[38;5;28misinstance�[39m(outputs, Prediction):
E �[1;32m 1138�[0m targets �[38;5;241m=�[39m outputs�[38;5;241m.�[39mtargets �[38;5;28;01mif�[39;00m outputs�[38;5;241m.�[39mtargets �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m �[38;5;28;01melse�[39;00m context�[38;5;241m.�[39mtargets
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:437�[0m, in �[0;36mcall_layer�[0;34m(layer, inputs, args, **kwargs)�[0m
E �[1;32m 433�[0m call_fn �[38;5;241m=�[39m �[38;5;28mtype�[39m(layer)�[38;5;241m.�[39mcall
E �[1;32m 435�[0m filtered_kwargs �[38;5;241m=�[39m filter_kwargs(filtered_kwargs, call_fn, �[38;5;241m
�[39m�[38;5;241m
�[39m_k)
E �[0;32m--> 437�[0m �[38;5;28;01mreturn�[39;00m �[43mlayer�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfiltered_kwargs�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/base.py:136�[0m, in �[0;36mModelOutput.__call__�[0;34m(self, inputs, args, **kwargs)�[0m
E �[1;32m 133�[0m inputs �[38;5;241m=�[39m tf_utils�[38;5;241m.�[39mcall_layer(�[38;5;28mself�[39m�[38;5;241m.�[39mpre, inputs, �[38;5;241m
�[39m�[38;5;241m
�[39mkwargs)
E �[1;32m 135�[0m �[38;5;66;03m# super call�[39;00m
E �[0;32m--> 136�[0m outputs �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43mModelOutput�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[38;5;21;43m__call__�[39;49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 138�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mpost:
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m tf_utils�[38;5;241m.�[39mcall_layer(�[38;5;28mself�[39m�[38;5;241m.�[39mpost, outputs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs)
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/base.py:114�[0m, in �[0;36mModelOutput.call�[0;34m(self, inputs, training, testing, **kwargs)�[0m
E �[1;32m 113�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mcall�[39m(�[38;5;28mself�[39m, inputs, training�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, testing�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[0;32m--> 114�[0m �[38;5;28;01mreturn�[39;00m �[43mtf_utils�[49m�[38;5;241;43m.�[39;49m�[43mcall_layer�[49m�[43m(�[49m
E �[1;32m 115�[0m �[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mto_call�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mtraining�[49m�[38;5;241;43m=�[39;49m�[43mtraining�[49m�[43m,�[49m�[43m �[49m�[43mtesting�[49m�[38;5;241;43m=�[39;49m�[43mtesting�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m
E �[1;32m 116�[0m �[43m �[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:437�[0m, in �[0;36mcall_layer�[0;34m(layer, inputs, args, **kwargs)�[0m
E �[1;32m 433�[0m call_fn �[38;5;241m=�[39m �[38;5;28mtype�[39m(layer)�[38;5;241m.�[39mcall
E �[1;32m 435�[0m filtered_kwargs �[38;5;241m=�[39m filter_kwargs(filtered_kwargs, call_fn, �[38;5;241m
�[39m�[38;5;241m
�[39m_k)
E �[0;32m--> 437�[0m �[38;5;28;01mreturn�[39;00m �[43mlayer�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfiltered_kwargs�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/classification.py:330�[0m, in �[0;36mEmbeddingTablePrediction.call�[0;34m(self, inputs, training, **kwargs)�[0m
E �[1;32m 329�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mcall�[39m(�[38;5;28mself�[39m, inputs, training�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs) �[38;5;241m-�[39m�[38;5;241m>�[39m tf�[38;5;241m.�[39mTensor:
E �[0;32m--> 330�[0m logits �[38;5;241m=�[39m �[43mtf�[49m�[38;5;241;43m.�[39;49m�[43mmatmul�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtable�[49m�[38;5;241;43m.�[39;49m�[43mtable�[49m�[38;5;241;43m.�[39;49m�[43membeddings�[49m�[43m,�[49m�[43m �[49m�[43mtranspose_b�[49m�[38;5;241;43m=�[39;49m�[38;5;28;43;01mTrue�[39;49;00m�[43m)�[49m
E �[1;32m 331�[0m logits �[38;5;241m=�[39m tf�[38;5;241m.�[39mnn�[38;5;241m.�[39mbias_add(logits, �[38;5;28mself�[39m�[38;5;241m.�[39mbias)
E �[1;32m 333�[0m �[38;5;28;01mreturn�[39;00m logits
E
E �[0;31mInvalidArgumentError�[0m: Exception encountered when calling layer "embedding_table_prediction" (type EmbeddingTablePrediction).
E
E Matrix size-incompatible: In[0]: [1024,32], In[1]: [6663,24] [Op:MatMul]
E
E Call arguments received by layer "embedding_table_prediction" (type EmbeddingTablePrediction):
E • inputs=tf.Tensor(shape=(1024, 32), dtype=float32)
E • training=False
E • kwargs={'testing': 'False', 'features': {'f_47_list_seq': '<tf.RaggedTensor [[11, 0, 0],\n [17, 0, 0],\n [2, 0, 0],\n ...,\n [14, 0, 0],\n [7, 0, 0],\n [14, 0, 0]]>', 'f_68_list_seq': '<tf.RaggedTensor [[13, 0, 0],\n [51, 0, 0],\n [30, 0, 0],\n ...,\n [16, 0, 0],\n [41, 0, 0],\n [17, 0, 0]]>', 'item_id_list_seq': '<tf.RaggedTensor [[17, 0, 0],\n [25, 0, 0],\n [90, 0, 0],\n ...,\n [31, 0, 0],\n [43, 0, 0],\n [19, 0, 0]]>'}}
E InvalidArgumentError: Exception encountered when calling layer "embedding_table_prediction" (type EmbeddingTablePrediction).
E
E Matrix size-incompatible: In[0]: [1024,32], In[1]: [6663,24] [Op:MatMul]
E
E Call arguments received by layer "embedding_table_prediction" (type EmbeddingTablePrediction):
E • inputs=tf.Tensor(shape=(1024, 32), dtype=float32)
E • training=False
E • kwargs={'testing': 'False', 'features': {'f_47_list_seq': '<tf.RaggedTensor [[11, 0, 0],\n [17, 0, 0],\n [2, 0, 0],\n ...,\n [14, 0, 0],\n [7, 0, 0],\n [14, 0, 0]]>', 'f_68_list_seq': '<tf.RaggedTensor [[13, 0, 0],\n [51, 0, 0],\n [30, 0, 0],\n ...,\n [16, 0, 0],\n [41, 0, 0],\n [17, 0, 0]]>', 'item_id_list_seq': '<tf.RaggedTensor [[17, 0, 0],\n [25, 0, 0],\n [90, 0, 0],\n ...,\n [31, 0, 0],\n [43, 0, 0],\n [19, 0, 0]]>'}}

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-02 15:50:42.395963: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-02 15:50:45.746044: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-02 15:50:45.746214: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-02 15:50:45.747113: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-02 15:50:45.747169: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13875 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-02 15:50:45.747794: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-02 15:50:45.747839: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13875 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-02 15:50:45.748443: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-02 15:50:45.748492: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13875 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-02 15:51:06.909770: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8500
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
_______________ test_usecase_incremental_training_layer_freezing _______________

tb = <testbook.client.TestbookNotebookClient object at 0x7f81c6be0280>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_incremental_training_layer_freezing(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py:22:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f81c6be0280>
cell = {'cell_type': 'code', 'execution_count': 8, 'id': '791e06ec-c0cb-4c0f-9e41-7e5c8fa1dc4e', 'metadata': {'execution': {'...: 'model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))\nmodel.fit(day_1, batch_size=1024, epochs=1)'}
cell_index = 13
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': '9e40b7...e, 'engine': '9e40b7b8-9fee-4cf6-9853-0af9c7e1e0e1', 'started': '2022-11-02T15:51:39.345148Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
E model.fit(day_1, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [8], line 2�[0m
E �[1;32m 1�[0m model�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39mtf�[38;5;241m.�[39mkeras�[38;5;241m.�[39moptimizers�[38;5;241m.�[39mAdam(learning_rate�[38;5;241m=�[39m�[38;5;241m0.01�[39m))
E �[0;32m----> 2�[0m �[43mmodel�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mday_1�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:856�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 853�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 854�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 856�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 858�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 859�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1059�[0m, in �[0;36mModel._maybe_build�[0;34m(self, inputs)�[0m
E �[1;32m 1057�[0m child�[38;5;241m.�[39m_feature_shapes �[38;5;241m=�[39m feature_shapes
E �[1;32m 1058�[0m child�[38;5;241m.�[39m_feature_dtypes �[38;5;241m=�[39m feature_dtypes
E �[0;32m-> 1059�[0m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43m_maybe_build�[49m�[43m(�[49m�[43minputs�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1077�[0m, in �[0;36mModel.build�[0;34m(self, input_shape)�[0m
E �[1;32m 1075�[0m �[38;5;28;01mfor�[39;00m layer �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mblocks:
E �[1;32m 1076�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m-> 1077�[0m layer�[38;5;241m.�[39mbuild(input_shape)
E �[1;32m 1078�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mTypeError�[39;00m:
E �[1;32m 1079�[0m t, v, tb �[38;5;241m=�[39m sys�[38;5;241m.�[39mexc_info()
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:582�[0m, in �[0;36mParallelBlock.build�[0;34m(self, input_shape)�[0m
E �[1;32m 578�[0m �[38;5;28;01mfor�[39;00m name, layer �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mparallel_dict�[38;5;241m.�[39mitems():
E �[1;32m 579�[0m layer_input_shape �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_filter_layer_inputs_using_schema(
E �[1;32m 580�[0m name, layer, input_shape
E �[1;32m 581�[0m )
E �[0;32m--> 582�[0m �[43mlayer�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43mlayer_input_shape�[49m�[43m)�[49m
E �[1;32m 583�[0m layer_out_shape �[38;5;241m=�[39m layer�[38;5;241m.�[39mcompute_output_shape(layer_input_shape)
E �[1;32m 584�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mautomatic_pruning �[38;5;129;01mand�[39;00m layer_out_shape �[38;5;241m==�[39m {}:
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:109�[0m, in �[0;36mModelBlock.build�[0;34m(self, input_shapes)�[0m
E �[1;32m 108�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mbuild�[39m(�[38;5;28mself�[39m, input_shapes):
E �[0;32m--> 109�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mblock�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43minput_shapes�[49m�[43m)�[49m
E �[1;32m 111�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mhasattr�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39mbuild, �[38;5;124m"�[39m�[38;5;124m_is_default�[39m�[38;5;124m"�[39m):
E �[1;32m 112�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_build_input_shape �[38;5;241m=�[39m input_shapes
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:129�[0m, in �[0;36mSequentialBlock.build�[0;34m(self, input_shape)�[0m
E �[1;32m 121�[0m �[38;5;124;03m"""Builds the sequential block�[39;00m
E �[1;32m 122�[0m
E �[1;32m 123�[0m �[38;5;124;03mParameters�[39;00m
E �[0;32m (...)�[0m
E �[1;32m 126�[0m �[38;5;124;03m The input shape, by default None�[39;00m
E �[1;32m 127�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 128�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_propagate_context(input_shape)
E �[0;32m--> 129�[0m �[43mbuild_sequentially�[49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mlayers�[49m�[43m,�[49m�[43m �[49m�[43minput_shape�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:833�[0m, in �[0;36mbuild_sequentially�[0;34m(self, layers, input_shape)�[0m
E �[1;32m 831�[0m �[38;5;28;01mfor�[39;00m layer �[38;5;129;01min�[39;00m layers:
E �[1;32m 832�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 833�[0m layer�[38;5;241m.�[39mbuild(input_shape)
E �[1;32m 834�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mTypeError�[39;00m:
E �[1;32m 835�[0m t, v, tb �[38;5;241m=�[39m sys�[38;5;241m.�[39mexc_info()
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:582�[0m, in �[0;36mParallelBlock.build�[0;34m(self, input_shape)�[0m
E �[1;32m 578�[0m �[38;5;28;01mfor�[39;00m name, layer �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mparallel_dict�[38;5;241m.�[39mitems():
E �[1;32m 579�[0m layer_input_shape �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_filter_layer_inputs_using_schema(
E �[1;32m 580�[0m name, layer, input_shape
E �[1;32m 581�[0m )
E �[0;32m--> 582�[0m �[43mlayer�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43mlayer_input_shape�[49m�[43m)�[49m
E �[1;32m 583�[0m layer_out_shape �[38;5;241m=�[39m layer�[38;5;241m.�[39mcompute_output_shape(layer_input_shape)
E �[1;32m 584�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mautomatic_pruning �[38;5;129;01mand�[39;00m layer_out_shape �[38;5;241m==�[39m {}:
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:582�[0m, in �[0;36mParallelBlock.build�[0;34m(self, input_shape)�[0m
E �[1;32m 578�[0m �[38;5;28;01mfor�[39;00m name, layer �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mparallel_dict�[38;5;241m.�[39mitems():
E �[1;32m 579�[0m layer_input_shape �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_filter_layer_inputs_using_schema(
E �[1;32m 580�[0m name, layer, input_shape
E �[1;32m 581�[0m )
E �[0;32m--> 582�[0m �[43mlayer�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43mlayer_input_shape�[49m�[43m)�[49m
E �[1;32m 583�[0m layer_out_shape �[38;5;241m=�[39m layer�[38;5;241m.�[39mcompute_output_shape(layer_input_shape)
E �[1;32m 584�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mautomatic_pruning �[38;5;129;01mand�[39;00m layer_out_shape �[38;5;241m==�[39m {}:
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:364�[0m, in �[0;36mEmbeddingTable.build�[0;34m(self, input_shapes)�[0m
E �[1;32m 362�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mbuild�[39m(�[38;5;28mself�[39m, input_shapes):
E �[1;32m 363�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtable�[38;5;241m.�[39mbuilt:
E �[0;32m--> 364�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtable�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43minput_shapes�[49m�[43m)�[49m
E �[1;32m 365�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28msuper�[39m(EmbeddingTable, �[38;5;28mself�[39m)�[38;5;241m.�[39mbuild(input_shapes)
E
E �[0;31mResourceExhaustedError�[0m: failed to allocate memory [Op:AddV2]
E ResourceExhaustedError: failed to allocate memory [Op:AddV2]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-02 15:51:33.469727: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-02 15:51:37.615636: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-02 15:51:37.615788: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-02 15:51:37.616652: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-02 15:51:37.616709: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13875 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-02 15:51:37.617287: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-02 15:51:37.617336: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13875 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-02 15:51:37.617938: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-02 15:51:37.617986: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13875 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-02 15:51:39.663296: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 10027008/17069309952
2022-11-02 15:51:39.663345: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 2446401665
MaxInUse: 2446401669
NumAllocs: 101
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-02 15:51:39.663360: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-02 15:51:39.663368: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 1
2022-11-02 15:51:39.663375: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 15
2022-11-02 15:51:39.663380: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 2
2022-11-02 15:51:39.663386: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 2
2022-11-02 15:51:39.663391: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 2
2022-11-02 15:51:39.663397: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 1
2022-11-02 15:51:39.663403: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 1
2022-11-02 15:51:39.663408: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 1
2022-11-02 15:51:39.663414: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-02 15:51:39.663420: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 1
2022-11-02 15:51:39.663425: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 60720, 1
2022-11-02 15:51:39.663431: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 1
2022-11-02 15:51:39.663461: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 1
2022-11-02 15:51:39.663468: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 1
2022-11-02 15:51:39.663474: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 1
2022-11-02 15:51:39.663480: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 1
2022-11-02 15:51:39.663485: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 1
2022-11-02 15:51:39.663491: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 1
2022-11-02 15:51:39.663497: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 1
2022-11-02 15:51:39.663503: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 1
2022-11-02 15:51:39.663508: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 2
2022-11-02 15:51:39.663539: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 2 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 26 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/inputs/test_continuous.py: 6 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 27 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 119 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 15 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 2 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 26 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/inputs/test_continuous.py: 6 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 27 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 85 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 9 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:960: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/models/test_retrieval.py: 54 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filea3a5c7ij.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:614: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 60 24%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 3 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 15 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 40 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 114 10 91%
merlin/models/tf/blocks/optimizer.py 173 13 92%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 245 49 80%
merlin/models/tf/core/base.py 244 55 77%
merlin/models/tf/core/combinators.py 424 53 88%
merlin/models/tf/core/encoder.py 170 29 83%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 288 30 90%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 10 83%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 452 31 93%
merlin/models/tf/loader.py 243 73 70%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 707 76 89%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 122 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 97 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 6 90%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 425 35 92%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 107 2 98%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 42 80%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11297 2217 80%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:62: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:78: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:92: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 2 failed, 819 passed, 12 skipped, 1347 warnings in 1570.40s (0:26:10) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: test-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins17430561275749933700.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit c855fcba5c1fc18f38aa9b2027a155f56ed7b7f2, no merge conflicts.
Running as SYSTEM
Setting status of c855fcba5c1fc18f38aa9b2027a155f56ed7b7f2 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1741/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse c855fcba5c1fc18f38aa9b2027a155f56ed7b7f2^{commit} # timeout=10
Checking out Revision c855fcba5c1fc18f38aa9b2027a155f56ed7b7f2 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f c855fcba5c1fc18f38aa9b2027a155f56ed7b7f2 # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk 7fd5ae4a2b9979eb3090f99541528ff702e1c092 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins9300177806724881165.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
test-gpu inst-nodeps: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/2/merlin-models-0.9.0+31.gc855fcba.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.2,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,boto3==1.24.75,botocore==1.29.2,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.8.2,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader @ git+https://github.com/NVIDIA-Merlin/dataloader.git@61ca2edae832da4eb2c6b93390c24920e68de1ae,merlin-models==0.9.0+31.gc855fcba,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.982,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.1,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.3.2,QtPy==2.2.1,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.42,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.0,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
test-gpu run-test-pre: PYTHONHASHSEED='3370988344'
test-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-seut13yb
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-seut13yb
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 7059e2358683b8ed746065a883e3339e02d41b1e
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-core==0.8.0+6.g7059e23) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+6.g7059e23) (0.55.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+6.g7059e23) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+6.g7059e23) (1.10.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+6.g7059e23) (1.2.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+6.g7059e23) (2022.3.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+6.g7059e23) (1.3.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+6.g7059e23) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+6.g7059e23) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+6.g7059e23) (21.3)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+6.g7059e23) (7.0.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+6.g7059e23) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+6.g7059e23) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (1.2.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (2.4.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (5.8.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/test-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (2.0.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (1.0.4)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (1.7.0)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+6.g7059e23) (59.8.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+6.g7059e23) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+6.g7059e23) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+6.g7059e23) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+6.g7059e23) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+6.g7059e23) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+6.g7059e23) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+6.g7059e23) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+6.g7059e23) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+6.g7059e23) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+6.g7059e23) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+6.g7059e23) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+6.g7059e23) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+6.g7059e23) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.8.0+6.g7059e23-py3-none-any.whl size=118560 sha256=1b2d894a3fef09f7d8da4fd2fecd79e2d7c1969d252486f64b63e3dd6c5c9dde
  Stored in directory: /tmp/pip-ephem-wheel-cache-0wnm9ov9/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.8.0+5.g563be4b
    Uninstalling merlin-core-0.8.0+5.g563be4b:
      Successfully uninstalled merlin-core-0.8.0+5.g563be4b
Successfully installed merlin-core-0.8.0+6.g7059e23

[notice] A new release of pip available: 22.2.2 -> 22.3
[notice] To update, run: pip install --upgrade pip
test-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-83ye6og6
Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-83ye6og6
Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit 8e7edbafd3006f56e73efdc0c01c4445ab57d028
Installing build dependencies: started
Installing build dependencies: finished with status 'done'
Getting requirements to build wheel: started
Getting requirements to build wheel: finished with status 'done'
Preparing metadata (pyproject.toml): started
Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+3.g8e7edbaf) (0.8.0+6.g7059e23)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+3.g8e7edbaf) (1.8.1)
Requirement already satisfied: merlin-dataloader>=0.0.2 in ./.tox/test-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+3.g8e7edbaf) (0.0.2+2.g61ca2ed)
Requirement already satisfied: dask>=2022.3.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (0.55.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.10.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.2.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2022.3.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.3.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (21.3)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (7.0.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+3.g8e7edbaf) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.2.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2.4.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (5.8.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/test-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2.0.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.0.4)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.7.0)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (59.8.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+3.g8e7edbaf) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3
[notice] To update, run: pip install --upgrade pip
test-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/test-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 836 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ................................. [ 12%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 16%]
..................... [ 19%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 19%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 19%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 21%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 21%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 21%]
tests/unit/tf/core/test_aggregation.py ......... [ 22%]
tests/unit/tf/core/test_base.py .. [ 22%]
tests/unit/tf/core/test_combinators.py s..................... [ 25%]
tests/unit/tf/core/test_encoder.py .. [ 25%]
tests/unit/tf/core/test_index.py ... [ 25%]
tests/unit/tf/core/test_prediction.py .. [ 26%]
tests/unit/tf/core/test_tabular.py ...... [ 26%]
tests/unit/tf/examples/test_01_getting_started.py . [ 27%]
tests/unit/tf/examples/test_02_dataschema.py . [ 27%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 27%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 27%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 27%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 27%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 27%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 27%]
[ 27%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 27%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 28%]
[ 28%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 28%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 28%]
tests/unit/tf/inputs/test_continuous.py ........ [ 29%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 33%]
........ [ 34%]
tests/unit/tf/inputs/test_tabular.py .................. [ 36%]
tests/unit/tf/layers/test_queue.py .............. [ 38%]
tests/unit/tf/losses/test_losses.py ....................... [ 40%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 41%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 44%]
tests/unit/tf/models/test_base.py s........................ [ 47%]
tests/unit/tf/models/test_benchmark.py .. [ 47%]
tests/unit/tf/models/test_ranking.py .................................. [ 51%]
tests/unit/tf/models/test_retrieval.py ................................. [ 55%]
........................................... [ 60%]
tests/unit/tf/outputs/test_base.py ...... [ 61%]
tests/unit/tf/outputs/test_classification.py ...... [ 62%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 63%]
tests/unit/tf/outputs/test_regression.py .. [ 64%]
tests/unit/tf/outputs/test_sampling.py .... [ 64%]
tests/unit/tf/outputs/test_topk.py . [ 64%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 64%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 66%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 67%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 68%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 68%]
tests/unit/tf/transformers/test_block.py ..................... [ 71%]
tests/unit/tf/transformers/test_transforms.py .......... [ 72%]
tests/unit/tf/transforms/test_bias.py .. [ 72%]
tests/unit/tf/transforms/test_features.py s............................. [ 76%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 81%]
tests/unit/tf/transforms/test_noise.py ..... [ 81%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 84%]
tests/unit/tf/utils/test_batch.py .... [ 84%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 85%]
tests/unit/torch/test_dataset.py ......... [ 86%]
tests/unit/torch/test_public_api.py . [ 86%]
tests/unit/torch/block/test_base.py .... [ 87%]
tests/unit/torch/block/test_mlp.py . [ 87%]
tests/unit/torch/features/test_continuous.py .. [ 87%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 89%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 91%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 92%]
tests/unit/torch/tabular/test_transformations.py ....... [ 93%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f3a11dcc790>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f3a11dcc790>
cell = {'cell_type': 'code', 'execution_count': 45, 'id': '337e6653-38a7-4a9e-b300-46bd0213b30e', 'metadata': {'execution': {... learning_rate=LEARNING_RATE\n)\nmodel.compile(run_eagerly=False, optimizer=optimizer)\nmodel.fit(loader, epochs=2)'}
cell_index = 87
exec_reply = {'buffers': [], 'content': {'ename': 'InvalidArgumentError', 'engine_info': {'engine_id': -1, 'engine_uuid': '5b6f6699...e, 'engine': '5b6f6699-6af4-4faa-826f-349c876a622e', 'started': '2022-11-04T19:15:47.297014Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E optimizer = tf.keras.optimizers.Adam(
E learning_rate=LEARNING_RATE
E )
E model.compile(run_eagerly=False, optimizer=optimizer)
E model.fit(loader, epochs=2)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInvalidArgumentError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [45], line 5�[0m
E �[1;32m 1�[0m optimizer �[38;5;241m=�[39m tf�[38;5;241m.�[39mkeras�[38;5;241m.�[39moptimizers�[38;5;241m.�[39mAdam(
E �[1;32m 2�[0m learning_rate�[38;5;241m=�[39mLEARNING_RATE
E �[1;32m 3�[0m )
E �[1;32m 4�[0m model�[38;5;241m.�[39mcompile(run_eagerly�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, optimizer�[38;5;241m=�[39moptimizer)
E �[0;32m----> 5�[0m �[43mmodel�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mloader�[49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m2�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:856�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 853�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 854�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 856�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 858�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 859�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1108�[0m, in �[0;36mModel.call�[0;34m(self, inputs, targets, training, testing, output_context)�[0m
E �[1;32m 1105�[0m outputs, context �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_call_child(�[38;5;28mself�[39m�[38;5;241m.�[39mpre, outputs, context)
E �[1;32m 1107�[0m �[38;5;28;01mfor�[39;00m block �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mblocks:
E �[0;32m-> 1108�[0m outputs, context �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_call_child�[49m�[43m(�[49m�[43mblock�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mcontext�[49m�[43m)�[49m
E �[1;32m 1110�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mpost:
E �[1;32m 1111�[0m outputs, context �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_call_child(�[38;5;28mself�[39m�[38;5;241m.�[39mpost, outputs, context)
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1137�[0m, in �[0;36mModel._call_child�[0;34m(self, child, inputs, context)�[0m
E �[1;32m 1134�[0m �[38;5;28;01mif�[39;00m �[38;5;28many�[39m(�[38;5;28misinstance�[39m(sub, ModelBlock) �[38;5;28;01mfor�[39;00m sub �[38;5;129;01min�[39;00m child�[38;5;241m.�[39msubmodules):
E �[1;32m 1135�[0m �[38;5;28;01mdel�[39;00m call_kwargs[�[38;5;124m"�[39m�[38;5;124mfeatures�[39m�[38;5;124m"�[39m]
E �[0;32m-> 1137�[0m outputs �[38;5;241m=�[39m �[43mcall_layer�[49m�[43m(�[49m�[43mchild�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mcall_kwargs�[49m�[43m)�[49m
E �[1;32m 1138�[0m �[38;5;28;01mif�[39;00m �[38;5;28misinstance�[39m(outputs, Prediction):
E �[1;32m 1139�[0m targets �[38;5;241m=�[39m outputs�[38;5;241m.�[39mtargets �[38;5;28;01mif�[39;00m outputs�[38;5;241m.�[39mtargets �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m �[38;5;28;01melse�[39;00m context�[38;5;241m.�[39mtargets
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:437�[0m, in �[0;36mcall_layer�[0;34m(layer, inputs, args, **kwargs)�[0m
E �[1;32m 433�[0m call_fn �[38;5;241m=�[39m �[38;5;28mtype�[39m(layer)�[38;5;241m.�[39mcall
E �[1;32m 435�[0m filtered_kwargs �[38;5;241m=�[39m filter_kwargs(filtered_kwargs, call_fn, �[38;5;241m
�[39m�[38;5;241m
�[39m_k)
E �[0;32m--> 437�[0m �[38;5;28;01mreturn�[39;00m �[43mlayer�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfiltered_kwargs�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/base.py:136�[0m, in �[0;36mModelOutput.__call__�[0;34m(self, inputs, args, **kwargs)�[0m
E �[1;32m 133�[0m inputs �[38;5;241m=�[39m tf_utils�[38;5;241m.�[39mcall_layer(�[38;5;28mself�[39m�[38;5;241m.�[39mpre, inputs, �[38;5;241m
�[39m�[38;5;241m
�[39mkwargs)
E �[1;32m 135�[0m �[38;5;66;03m# super call�[39;00m
E �[0;32m--> 136�[0m outputs �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43mModelOutput�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[38;5;21;43m__call__�[39;49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 138�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mpost:
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m tf_utils�[38;5;241m.�[39mcall_layer(�[38;5;28mself�[39m�[38;5;241m.�[39mpost, outputs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs)
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/base.py:114�[0m, in �[0;36mModelOutput.call�[0;34m(self, inputs, training, testing, **kwargs)�[0m
E �[1;32m 113�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mcall�[39m(�[38;5;28mself�[39m, inputs, training�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, testing�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[0;32m--> 114�[0m �[38;5;28;01mreturn�[39;00m �[43mtf_utils�[49m�[38;5;241;43m.�[39;49m�[43mcall_layer�[49m�[43m(�[49m
E �[1;32m 115�[0m �[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mto_call�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mtraining�[49m�[38;5;241;43m=�[39;49m�[43mtraining�[49m�[43m,�[49m�[43m �[49m�[43mtesting�[49m�[38;5;241;43m=�[39;49m�[43mtesting�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m
E �[1;32m 116�[0m �[43m �[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:437�[0m, in �[0;36mcall_layer�[0;34m(layer, inputs, args, **kwargs)�[0m
E �[1;32m 433�[0m call_fn �[38;5;241m=�[39m �[38;5;28mtype�[39m(layer)�[38;5;241m.�[39mcall
E �[1;32m 435�[0m filtered_kwargs �[38;5;241m=�[39m filter_kwargs(filtered_kwargs, call_fn, �[38;5;241m
�[39m�[38;5;241m
�[39m_k)
E �[0;32m--> 437�[0m �[38;5;28;01mreturn�[39;00m �[43mlayer�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfiltered_kwargs�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/classification.py:330�[0m, in �[0;36mEmbeddingTablePrediction.call�[0;34m(self, inputs, training, **kwargs)�[0m
E �[1;32m 329�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mcall�[39m(�[38;5;28mself�[39m, inputs, training�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs) �[38;5;241m-�[39m�[38;5;241m>�[39m tf�[38;5;241m.�[39mTensor:
E �[0;32m--> 330�[0m logits �[38;5;241m=�[39m �[43mtf�[49m�[38;5;241;43m.�[39;49m�[43mmatmul�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtable�[49m�[38;5;241;43m.�[39;49m�[43mtable�[49m�[38;5;241;43m.�[39;49m�[43membeddings�[49m�[43m,�[49m�[43m �[49m�[43mtranspose_b�[49m�[38;5;241;43m=�[39;49m�[38;5;28;43;01mTrue�[39;49;00m�[43m)�[49m
E �[1;32m 331�[0m logits �[38;5;241m=�[39m tf�[38;5;241m.�[39mnn�[38;5;241m.�[39mbias_add(logits, �[38;5;28mself�[39m�[38;5;241m.�[39mbias)
E �[1;32m 333�[0m �[38;5;28;01mreturn�[39;00m logits
E
E �[0;31mInvalidArgumentError�[0m: Exception encountered when calling layer "embedding_table_prediction" (type EmbeddingTablePrediction).
E
E Matrix size-incompatible: In[0]: [1024,32], In[1]: [6608,24] [Op:MatMul]
E
E Call arguments received by layer "embedding_table_prediction" (type EmbeddingTablePrediction):
E • inputs=tf.Tensor(shape=(1024, 32), dtype=float32)
E • training=False
E • kwargs={'testing': 'False', 'features': {'f_47_list_seq': '<tf.RaggedTensor [[[13],\n [0],\n [0]],\n\n [[6],\n [0],\n [0]],\n\n [[8],\n [0],\n [0]],\n\n ...,\n\n [[7],\n [0],\n [0]],\n\n [[9],\n [0],\n [0]],\n\n [[19],\n [0],\n [0]]]>', 'f_68_list_seq': '<tf.RaggedTensor [[[45],\n [0],\n [0]],\n\n [[24],\n [0],\n [0]],\n\n [[45],\n [0],\n [0]],\n\n ...,\n\n [[22],\n [0],\n [0]],\n\n [[33],\n [0],\n [0]],\n\n [[9],\n [0],\n [0]]]>', 'item_id_list_seq': '<tf.RaggedTensor [[[62],\n [0],\n [0]],\n\n [[45],\n [0],\n [0]],\n\n [[17],\n [0],\n [0]],\n\n ...,\n\n [[6],\n [0],\n [0]],\n\n [[3],\n [0],\n [0]],\n\n [[10],\n [0],\n [0]]]>'}}
E InvalidArgumentError: Exception encountered when calling layer "embedding_table_prediction" (type EmbeddingTablePrediction).
E
E Matrix size-incompatible: In[0]: [1024,32], In[1]: [6608,24] [Op:MatMul]
E
E Call arguments received by layer "embedding_table_prediction" (type EmbeddingTablePrediction):
E • inputs=tf.Tensor(shape=(1024, 32), dtype=float32)
E • training=False
E • kwargs={'testing': 'False', 'features': {'f_47_list_seq': '<tf.RaggedTensor [[[13],\n [0],\n [0]],\n\n [[6],\n [0],\n [0]],\n\n [[8],\n [0],\n [0]],\n\n ...,\n\n [[7],\n [0],\n [0]],\n\n [[9],\n [0],\n [0]],\n\n [[19],\n [0],\n [0]]]>', 'f_68_list_seq': '<tf.RaggedTensor [[[45],\n [0],\n [0]],\n\n [[24],\n [0],\n [0]],\n\n [[45],\n [0],\n [0]],\n\n ...,\n\n [[22],\n [0],\n [0]],\n\n [[33],\n [0],\n [0]],\n\n [[9],\n [0],\n [0]]]>', 'item_id_list_seq': '<tf.RaggedTensor [[[62],\n [0],\n [0]],\n\n [[45],\n [0],\n [0]],\n\n [[17],\n [0],\n [0]],\n\n ...,\n\n [[6],\n [0],\n [0]],\n\n [[3],\n [0],\n [0]],\n\n [[10],\n [0],\n [0]]]>'}}

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-04 19:15:15.847799: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-04 19:15:19.156066: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-04 19:15:19.156237: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-04 19:15:19.157069: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-04 19:15:19.157129: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-04 19:15:19.157735: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-04 19:15:19.157783: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-04 19:15:19.158389: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-04 19:15:19.158440: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-04 19:15:39.771007: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8500
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 2 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 26 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 27 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 15 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 2 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 26 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 27 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 9 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:968: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filecz_nnek9.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 60 24%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 3 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 15 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 40 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 114 10 91%
merlin/models/tf/blocks/optimizer.py 173 13 92%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 49 80%
merlin/models/tf/core/base.py 244 55 77%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 170 29 83%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 10 83%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 31 93%
merlin/models/tf/loader.py 245 73 70%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 708 75 89%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 122 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 97 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 6 90%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 36 92%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 42 80%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11357 2227 80%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:62: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:78: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:92: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 823 passed, 12 skipped, 1352 warnings in 1600.89s (0:26:40) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/test-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: test-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins10852325146448546568.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit ccd6aa822d25e9e4fbd73b0e3cf87586f8c0d2c4, no merge conflicts.
Running as SYSTEM
Setting status of ccd6aa822d25e9e4fbd73b0e3cf87586f8c0d2c4 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1773/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse ccd6aa822d25e9e4fbd73b0e3cf87586f8c0d2c4^{commit} # timeout=10
Checking out Revision ccd6aa822d25e9e4fbd73b0e3cf87586f8c0d2c4 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f ccd6aa822d25e9e4fbd73b0e3cf87586f8c0d2c4 # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk dffc060b0200ac11bac96fe2572129e2f2296aef # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins3000346045936939199.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu inst-nodeps: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/2/merlin-models-0.9.0+36.gccd6aa82.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.4,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.1,boto3==1.24.75,botocore==1.29.4,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.2,merlin-models==0.9.0+36.gccd6aa82,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.982,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.1,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.2.1,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.43,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.0,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='2405621329'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-cw80f275
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-cw80f275
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 64755badd4e5756601f66e7e568201aedb8a4144
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+7.g64755ba) (1.10.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+7.g64755ba) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+7.g64755ba) (21.3)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+7.g64755ba) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+7.g64755ba) (3.19.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+7.g64755ba) (4.64.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+7.g64755ba) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+7.g64755ba) (1.3.5)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+7.g64755ba) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+7.g64755ba) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+7.g64755ba) (1.2.5)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+7.g64755ba) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+7.g64755ba) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (2.2.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (5.8.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (1.0.4)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+7.g64755ba) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+7.g64755ba) (65.4.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+7.g64755ba) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+7.g64755ba) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+7.g64755ba) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+7.g64755ba) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+7.g64755ba) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+7.g64755ba) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+7.g64755ba) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+7.g64755ba) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+7.g64755ba) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+7.g64755ba) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+7.g64755ba) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+7.g64755ba) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3.1
[notice] To update, run: pip install --upgrade pip
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-xtewlbrr
Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-xtewlbrr
Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
Installing build dependencies: started
Installing build dependencies: finished with status 'done'
Getting requirements to build wheel: started
Getting requirements to build wheel: finished with status 'done'
Preparing metadata (pyproject.toml): started
Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-dataloader>=0.0.2 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+7.g64755ba)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.4.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3.1
[notice] To update, run: pip install --upgrade pip
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 875 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s........................ [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 49%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ..................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 81%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f32180e9c70>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f32180e9c70>
cell = {'cell_type': 'code', 'execution_count': 45, 'id': '337e6653-38a7-4a9e-b300-46bd0213b30e', 'metadata': {'execution': {... learning_rate=LEARNING_RATE\n)\nmodel.compile(run_eagerly=False, optimizer=optimizer)\nmodel.fit(loader, epochs=2)'}
cell_index = 87
exec_reply = {'buffers': [], 'content': {'ename': 'InvalidArgumentError', 'engine_info': {'engine_id': -1, 'engine_uuid': '77a646f3...e, 'engine': '77a646f3-6771-421a-9f76-8f602fa5277f', 'started': '2022-11-08T13:39:11.735943Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E optimizer = tf.keras.optimizers.Adam(
E learning_rate=LEARNING_RATE
E )
E model.compile(run_eagerly=False, optimizer=optimizer)
E model.fit(loader, epochs=2)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mInvalidArgumentError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [45], line 5�[0m
E �[1;32m 1�[0m optimizer �[38;5;241m=�[39m tf�[38;5;241m.�[39mkeras�[38;5;241m.�[39moptimizers�[38;5;241m.�[39mAdam(
E �[1;32m 2�[0m learning_rate�[38;5;241m=�[39mLEARNING_RATE
E �[1;32m 3�[0m )
E �[1;32m 4�[0m model�[38;5;241m.�[39mcompile(run_eagerly�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, optimizer�[38;5;241m=�[39moptimizer)
E �[0;32m----> 5�[0m �[43mmodel�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mloader�[49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m2�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:899�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 896�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 897�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 899�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 901�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 902�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1179�[0m, in �[0;36mModel.call�[0;34m(self, inputs, targets, training, testing, output_context)�[0m
E �[1;32m 1176�[0m outputs, context �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_call_child(�[38;5;28mself�[39m�[38;5;241m.�[39mpre, outputs, context)
E �[1;32m 1178�[0m �[38;5;28;01mfor�[39;00m block �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mblocks:
E �[0;32m-> 1179�[0m outputs, context �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_call_child�[49m�[43m(�[49m�[43mblock�[49m�[43m,�[49m�[43m �[49m�[43moutputs�[49m�[43m,�[49m�[43m �[49m�[43mcontext�[49m�[43m)�[49m
E �[1;32m 1181�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mpost:
E �[1;32m 1182�[0m outputs, context �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_call_child(�[38;5;28mself�[39m�[38;5;241m.�[39mpost, outputs, context)
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1208�[0m, in �[0;36mModel._call_child�[0;34m(self, child, inputs, context)�[0m
E �[1;32m 1205�[0m �[38;5;28;01mif�[39;00m �[38;5;28many�[39m(�[38;5;28misinstance�[39m(sub, ModelBlock) �[38;5;28;01mfor�[39;00m sub �[38;5;129;01min�[39;00m child�[38;5;241m.�[39msubmodules):
E �[1;32m 1206�[0m �[38;5;28;01mdel�[39;00m call_kwargs[�[38;5;124m"�[39m�[38;5;124mfeatures�[39m�[38;5;124m"�[39m]
E �[0;32m-> 1208�[0m outputs �[38;5;241m=�[39m �[43mcall_layer�[49m�[43m(�[49m�[43mchild�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mcall_kwargs�[49m�[43m)�[49m
E �[1;32m 1209�[0m �[38;5;28;01mif�[39;00m �[38;5;28misinstance�[39m(outputs, Prediction):
E �[1;32m 1210�[0m targets �[38;5;241m=�[39m outputs�[38;5;241m.�[39mtargets �[38;5;28;01mif�[39;00m outputs�[38;5;241m.�[39mtargets �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m �[38;5;28;01melse�[39;00m context�[38;5;241m.�[39mtargets
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:437�[0m, in �[0;36mcall_layer�[0;34m(layer, inputs, args, **kwargs)�[0m
E �[1;32m 433�[0m call_fn �[38;5;241m=�[39m �[38;5;28mtype�[39m(layer)�[38;5;241m.�[39mcall
E �[1;32m 435�[0m filtered_kwargs �[38;5;241m=�[39m filter_kwargs(filtered_kwargs, call_fn, �[38;5;241m
�[39m�[38;5;241m
�[39m_k)
E �[0;32m--> 437�[0m �[38;5;28;01mreturn�[39;00m �[43mlayer�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfiltered_kwargs�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/base.py:136�[0m, in �[0;36mModelOutput.__call__�[0;34m(self, inputs, args, **kwargs)�[0m
E �[1;32m 133�[0m inputs �[38;5;241m=�[39m tf_utils�[38;5;241m.�[39mcall_layer(�[38;5;28mself�[39m�[38;5;241m.�[39mpre, inputs, �[38;5;241m
�[39m�[38;5;241m
�[39mkwargs)
E �[1;32m 135�[0m �[38;5;66;03m# super call�[39;00m
E �[0;32m--> 136�[0m outputs �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43mModelOutput�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[38;5;21;43m__call__�[39;49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 138�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mpost:
E �[1;32m 139�[0m outputs �[38;5;241m=�[39m tf_utils�[38;5;241m.�[39mcall_layer(�[38;5;28mself�[39m�[38;5;241m.�[39mpost, outputs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs)
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/base.py:114�[0m, in �[0;36mModelOutput.call�[0;34m(self, inputs, training, testing, **kwargs)�[0m
E �[1;32m 113�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mcall�[39m(�[38;5;28mself�[39m, inputs, training�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, testing�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[0;32m--> 114�[0m �[38;5;28;01mreturn�[39;00m �[43mtf_utils�[49m�[38;5;241;43m.�[39;49m�[43mcall_layer�[49m�[43m(�[49m
E �[1;32m 115�[0m �[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mto_call�[49m�[43m,�[49m�[43m �[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[43mtraining�[49m�[38;5;241;43m=�[39;49m�[43mtraining�[49m�[43m,�[49m�[43m �[49m�[43mtesting�[49m�[38;5;241;43m=�[39;49m�[43mtesting�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m
E �[1;32m 116�[0m �[43m �[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:437�[0m, in �[0;36mcall_layer�[0;34m(layer, inputs, args, **kwargs)�[0m
E �[1;32m 433�[0m call_fn �[38;5;241m=�[39m �[38;5;28mtype�[39m(layer)�[38;5;241m.�[39mcall
E �[1;32m 435�[0m filtered_kwargs �[38;5;241m=�[39m filter_kwargs(filtered_kwargs, call_fn, �[38;5;241m
�[39m�[38;5;241m
�[39m_k)
E �[0;32m--> 437�[0m �[38;5;28;01mreturn�[39;00m �[43mlayer�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfiltered_kwargs�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/outputs/classification.py:330�[0m, in �[0;36mEmbeddingTablePrediction.call�[0;34m(self, inputs, training, **kwargs)�[0m
E �[1;32m 329�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mcall�[39m(�[38;5;28mself�[39m, inputs, training�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs) �[38;5;241m-�[39m�[38;5;241m>�[39m tf�[38;5;241m.�[39mTensor:
E �[0;32m--> 330�[0m logits �[38;5;241m=�[39m �[43mtf�[49m�[38;5;241;43m.�[39;49m�[43mmatmul�[49m�[43m(�[49m�[43minputs�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtable�[49m�[38;5;241;43m.�[39;49m�[43mtable�[49m�[38;5;241;43m.�[39;49m�[43membeddings�[49m�[43m,�[49m�[43m �[49m�[43mtranspose_b�[49m�[38;5;241;43m=�[39;49m�[38;5;28;43;01mTrue�[39;49;00m�[43m)�[49m
E �[1;32m 331�[0m logits �[38;5;241m=�[39m tf�[38;5;241m.�[39mnn�[38;5;241m.�[39mbias_add(logits, �[38;5;28mself�[39m�[38;5;241m.�[39mbias)
E �[1;32m 333�[0m �[38;5;28;01mreturn�[39;00m logits
E
E �[0;31mInvalidArgumentError�[0m: Exception encountered when calling layer "embedding_table_prediction" (type EmbeddingTablePrediction).
E
E Matrix size-incompatible: In[0]: [1024,32], In[1]: [6657,24] [Op:MatMul]
E
E Call arguments received by layer "embedding_table_prediction" (type EmbeddingTablePrediction):
E • inputs=tf.Tensor(shape=(1024, 32), dtype=float32)
E • training=False
E • kwargs={'testing': 'False', 'features': {'f_47_list_seq': '<tf.RaggedTensor [[[18],\n [0],\n [0]],\n\n [[2],\n [0],\n [0]],\n\n [[6],\n [0],\n [0]],\n\n ...,\n\n [[9],\n [0],\n [0]],\n\n [[10],\n [0],\n [0]],\n\n [[17],\n [0],\n [0]]]>', 'f_68_list_seq': '<tf.RaggedTensor [[[46],\n [0],\n [0]],\n\n [[23],\n [0],\n [0]],\n\n [[13],\n [0],\n [0]],\n\n ...,\n\n [[2],\n [0],\n [0]],\n\n [[5],\n [0],\n [0]],\n\n [[19],\n [0],\n [0]]]>', 'item_id_list_seq': '<tf.RaggedTensor [[[13],\n [0],\n [0]],\n\n [[6],\n [0],\n [0]],\n\n [[26],\n [0],\n [0]],\n\n ...,\n\n [[59],\n [0],\n [0]],\n\n [[12],\n [0],\n [0]],\n\n [[12],\n [0],\n [0]]]>'}}
E InvalidArgumentError: Exception encountered when calling layer "embedding_table_prediction" (type EmbeddingTablePrediction).
E
E Matrix size-incompatible: In[0]: [1024,32], In[1]: [6657,24] [Op:MatMul]
E
E Call arguments received by layer "embedding_table_prediction" (type EmbeddingTablePrediction):
E • inputs=tf.Tensor(shape=(1024, 32), dtype=float32)
E • training=False
E • kwargs={'testing': 'False', 'features': {'f_47_list_seq': '<tf.RaggedTensor [[[18],\n [0],\n [0]],\n\n [[2],\n [0],\n [0]],\n\n [[6],\n [0],\n [0]],\n\n ...,\n\n [[9],\n [0],\n [0]],\n\n [[10],\n [0],\n [0]],\n\n [[17],\n [0],\n [0]]]>', 'f_68_list_seq': '<tf.RaggedTensor [[[46],\n [0],\n [0]],\n\n [[23],\n [0],\n [0]],\n\n [[13],\n [0],\n [0]],\n\n ...,\n\n [[2],\n [0],\n [0]],\n\n [[5],\n [0],\n [0]],\n\n [[19],\n [0],\n [0]]]>', 'item_id_list_seq': '<tf.RaggedTensor [[[13],\n [0],\n [0]],\n\n [[6],\n [0],\n [0]],\n\n [[26],\n [0],\n [0]],\n\n ...,\n\n [[59],\n [0],\n [0]],\n\n [[12],\n [0],\n [0]],\n\n [[12],\n [0],\n [0]]]>'}}

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-08 13:38:38.662411: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-08 13:38:42.016192: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-08 13:38:42.016302: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-08 13:38:42.017129: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-08 13:38:42.017183: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-08 13:38:42.017811: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-08 13:38:42.017860: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-08 13:38:42.018479: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-08 13:38:42.018529: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-08 13:39:03.941744: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8500
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 27 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 15 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 27 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 9 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:968: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filepu3w9azt.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 107 80 25%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 50 80%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 170 29 83%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 10 83%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 31 93%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 751 102 86%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 122 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 97 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 6 90%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 36 92%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 42 80%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11543 2333 80%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 861 passed, 13 skipped, 1431 warnings in 1687.88s (0:28:07) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins15431973141797366852.sh

@rnyak rnyak added this to the Merlin 22.12 milestone Nov 8, 2022
@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 585f0286218628dda075ca35a6d17f65de7e5676, no merge conflicts.
Running as SYSTEM
Setting status of 585f0286218628dda075ca35a6d17f65de7e5676 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1791/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 585f0286218628dda075ca35a6d17f65de7e5676^{commit} # timeout=10
Checking out Revision 585f0286218628dda075ca35a6d17f65de7e5676 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 585f0286218628dda075ca35a6d17f65de7e5676 # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk 644b568e69199b92fc5597a2ac165ea46fdebcc0 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins435848096930995835.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu inst-nodeps: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/2/merlin-models-0.9.0+41.g585f0286.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.5,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.1,boto3==1.24.75,botocore==1.29.5,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader @ git+https://github.com/NVIDIA-Merlin/dataloader.git@b6f9a67b2c0caf1b0b1ded10e5491b5a0f13230a,merlin-models==0.9.0+41.g585f0286,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.982,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.1,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.2.1,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.43,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.0,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='704414433'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-329jbm75
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-329jbm75
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit c1ddc198bc1b0c39b5008a4ec07f2b7f02fd22c1
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (1.3.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (21.3)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (0.55.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (1.10.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (7.0.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (1.2.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (1.2.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (2.4.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (5.8.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+8.gc1ddc19) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+8.gc1ddc19) (65.4.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+8.gc1ddc19) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+8.gc1ddc19) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3.1
[notice] To update, run: pip install --upgrade pip
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-qbsx7bbu
Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-qbsx7bbu
Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
Installing build dependencies: started
Installing build dependencies: finished with status 'done'
Getting requirements to build wheel: started
Getting requirements to build wheel: finished with status 'done'
Preparing metadata (pyproject.toml): started
Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+8.gc1ddc19)
Requirement already satisfied: merlin-dataloader>=0.0.2 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2+3.gb6f9a67)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.4.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3.1
[notice] To update, run: pip install --upgrade pip
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 876 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s......................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ..................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 81%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7faf1b3b0d60>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7faf1b3b0d60>
cell = {'cell_type': 'code', 'execution_count': 15, 'id': '65f5c222', 'metadata': {'execution': {'iopub.status.busy': '2022-1...train/"), output_files=10)\nworkflow.transform(valid).to_parquet(os.path.join(DATA_FOLDER, "valid/"), output_files=1)'}
cell_index = 29
exec_reply = {'buffers': [], 'content': {'ename': 'TypeError', 'engine_info': {'engine_id': -1, 'engine_uuid': '7d10957d-2bcf-49d8-...e, 'engine': '7d10957d-2bcf-49d8-b41f-5ff6131738d7', 'started': '2022-11-09T14:54:12.832390Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E # fit data
E workflow.fit(train)
E
E # transform and save data
E workflow.transform(train).to_parquet(os.path.join(DATA_FOLDER, "train/"), output_files=10)
E workflow.transform(valid).to_parquet(os.path.join(DATA_FOLDER, "valid/"), output_files=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mTypeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [15], line 2�[0m
E �[1;32m 1�[0m �[38;5;66;03m# fit data�[39;00m
E �[0;32m----> 2�[0m �[43mworkflow�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mtrain�[49m�[43m)�[49m
E �[1;32m 4�[0m �[38;5;66;03m# transform and save data�[39;00m
E �[1;32m 5�[0m workflow�[38;5;241m.�[39mtransform(train)�[38;5;241m.�[39mto_parquet(os�[38;5;241m.�[39mpath�[38;5;241m.�[39mjoin(DATA_FOLDER, �[38;5;124m"�[39m�[38;5;124mtrain/�[39m�[38;5;124m"�[39m), output_files�[38;5;241m=�[39m�[38;5;241m10�[39m)
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/nvtabular/workflow/workflow.py:209�[0m, in �[0;36mWorkflow.fit�[0;34m(self, dataset)�[0m
E �[1;32m 205�[0m dependencies�[38;5;241m.�[39mdifference_update(current_phase)
E �[1;32m 207�[0m �[38;5;66;03m# This captures the output dtypes of operators like LambdaOp where�[39;00m
E �[1;32m 208�[0m �[38;5;66;03m# the dtype can't be determined without running the transform�[39;00m
E �[0;32m--> 209�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_transform_impl�[49m�[43m(�[49m�[43mdataset�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[38;5;28;43;01mTrue�[39;49;00m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43msample_dtypes�[49m�[43m(�[49m�[43m)�[49m
E �[1;32m 210�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mgraph�[38;5;241m.�[39mconstruct_schema(dataset�[38;5;241m.�[39mschema, preserve_dtypes�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[1;32m 212�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28mself�[39m
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1147�[0m, in �[0;36mDataset.sample_dtypes�[0;34m(self, n, annotate_lists)�[0m
E �[1;32m 1140�[0m �[38;5;124;03m"""Return the real dtypes of the Dataset�[39;00m
E �[1;32m 1141�[0m
E �[1;32m 1142�[0m �[38;5;124;03mUse cached metadata if this operation was�[39;00m
E �[1;32m 1143�[0m �[38;5;124;03malready performed. Otherwise, call down to the�[39;00m
E �[1;32m 1144�[0m �[38;5;124;03munderlying engine for sampling logic.�[39;00m
E �[1;32m 1145�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 1146�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_real_meta�[38;5;241m.�[39mget(n, �[38;5;28;01mNone�[39;00m) �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m:
E �[0;32m-> 1147�[0m _real_meta �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mengine�[49m�[38;5;241;43m.�[39;49m�[43msample_data�[49m�[43m(�[49m�[43mn�[49m�[38;5;241;43m=�[39;49m�[43mn�[49m�[43m)�[49m
E �[1;32m 1148�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mdtypes:
E �[1;32m 1149�[0m _real_meta �[38;5;241m=�[39m _set_dtypes(_real_meta, �[38;5;28mself�[39m�[38;5;241m.�[39mdtypes)
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71�[0m, in �[0;36mDatasetEngine.sample_data�[0;34m(self, n)�[0m
E �[1;32m 69�[0m _ddf �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39mto_ddf()
E �[1;32m 70�[0m �[38;5;28;01mfor�[39;00m partition_index �[38;5;129;01min�[39;00m �[38;5;28mrange�[39m(_ddf�[38;5;241m.�[39mnpartitions):
E �[0;32m---> 71�[0m head �[38;5;241m=�[39m �[43m_ddf�[49m�[38;5;241;43m.�[39;49m�[43mpartitions�[49m�[43m[�[49m�[43mpartition_index�[49m�[43m]�[49m�[38;5;241;43m.�[39;49m�[43mhead�[49m�[43m(�[49m�[43mn�[49m�[43m)�[49m
E �[1;32m 72�[0m �[38;5;28;01mif�[39;00m �[38;5;28mlen�[39m(head):
E �[1;32m 73�[0m �[38;5;28;01mreturn�[39;00m head
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196�[0m, in �[0;36m_Frame.head�[0;34m(self, n, npartitions, compute)�[0m
E �[1;32m 1194�[0m �[38;5;66;03m# No need to warn if we're already looking at all partitions�[39;00m
E �[1;32m 1195�[0m safe �[38;5;241m=�[39m npartitions �[38;5;241m!=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39mnpartitions
E �[0;32m-> 1196�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_head�[49m�[43m(�[49m�[43mn�[49m�[38;5;241;43m=�[39;49m�[43mn�[49m�[43m,�[49m�[43m �[49m�[43mnpartitions�[49m�[38;5;241;43m=�[39;49m�[43mnpartitions�[49m�[43m,�[49m�[43m �[49m�[43mcompute�[49m�[38;5;241;43m=�[39;49m�[43mcompute�[49m�[43m,�[49m�[43m �[49m�[43msafe�[49m�[38;5;241;43m=�[39;49m�[43msafe�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230�[0m, in �[0;36m_Frame.head�[0;34m(self, n, npartitions, compute, safe)�[0m
E �[1;32m 1225�[0m result �[38;5;241m=�[39m new_dd_object(
E �[1;32m 1226�[0m graph, name, �[38;5;28mself�[39m�[38;5;241m.�[39m_meta, [�[38;5;28mself�[39m�[38;5;241m.�[39mdivisions[�[38;5;241m0�[39m], �[38;5;28mself�[39m�[38;5;241m.�[39mdivisions[npartitions]]
E �[1;32m 1227�[0m )
E �[1;32m 1229�[0m �[38;5;28;01mif�[39;00m compute:
E �[0;32m-> 1230�[0m result �[38;5;241m=�[39m �[43mresult�[49m�[38;5;241;43m.�[39;49m�[43mcompute�[49m�[43m(�[49m�[43m)�[49m
E �[1;32m 1231�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/base.py:292�[0m, in �[0;36mDaskMethodsMixin.compute�[0;34m(self, **kwargs)�[0m
E �[1;32m 268�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mcompute�[39m(�[38;5;28mself�[39m, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 269�[0m �[38;5;124;03m"""Compute this dask collection�[39;00m
E �[1;32m 270�[0m
E �[1;32m 271�[0m �[38;5;124;03m This turns a lazy Dask collection into its in-memory equivalent.�[39;00m
E �[0;32m (...)�[0m
E �[1;32m 290�[0m �[38;5;124;03m dask.base.compute�[39;00m
E �[1;32m 291�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 292�[0m (result,) �[38;5;241m=�[39m �[43mcompute�[49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[43m,�[49m�[43m �[49m�[43mtraverse�[49m�[38;5;241;43m=�[39;49m�[38;5;28;43;01mFalse�[39;49;00m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 293�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/base.py:575�[0m, in �[0;36mcompute�[0;34m(traverse, optimize_graph, scheduler, get, *args, **kwargs)�[0m
E �[1;32m 572�[0m keys�[38;5;241m.�[39mappend(x�[38;5;241m.�[39m__dask_keys
())
E �[1;32m 573�[0m postcomputes�[38;5;241m.�[39mappend(x�[38;5;241m.�[39m__dask_postcompute
())
E �[0;32m--> 575�[0m results �[38;5;241m=�[39m �[43mschedule�[49m�[43m(�[49m�[43mdsk�[49m�[43m,�[49m�[43m �[49m�[43mkeys�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 576�[0m �[38;5;28;01mreturn�[39;00m repack([f(r, �[38;5;241m�[39ma) �[38;5;28;01mfor�[39;00m r, (f, a) �[38;5;129;01min�[39;00m �[38;5;28mzip�[39m(results, postcomputes)])
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:554�[0m, in �[0;36mget_sync�[0;34m(dsk, keys, **kwargs)�[0m
E �[1;32m 549�[0m �[38;5;124;03m"""A naive synchronous version of get_async�[39;00m
E �[1;32m 550�[0m
E �[1;32m 551�[0m �[38;5;124;03mCan be useful for debugging.�[39;00m
E �[1;32m 552�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 553�[0m kwargs�[38;5;241m.�[39mpop(�[38;5;124m"�[39m�[38;5;124mnum_workers�[39m�[38;5;124m"�[39m, �[38;5;28;01mNone�[39;00m) �[38;5;66;03m# if num_workers present, remove it�[39;00m
E �[0;32m--> 554�[0m �[38;5;28;01mreturn�[39;00m �[43mget_async�[49m�[43m(�[49m
E �[1;32m 555�[0m �[43m �[49m�[43msynchronous_executor�[49m�[38;5;241;43m.�[39;49m�[43msubmit�[49m�[43m,�[49m
E �[1;32m 556�[0m �[43m �[49m�[43msynchronous_executor�[49m�[38;5;241;43m.�[39;49m�[43m_max_workers�[49m�[43m,�[49m
E �[1;32m 557�[0m �[43m �[49m�[43mdsk�[49m�[43m,�[49m
E �[1;32m 558�[0m �[43m �[49m�[43mkeys�[49m�[43m,�[49m
E �[1;32m 559�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 560�[0m �[43m�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:497�[0m, in �[0;36mget_async�[0;34m(submit, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, chunksize, **kwargs)�[0m
E �[1;32m 495�[0m �[38;5;28;01mwhile�[39;00m state[�[38;5;124m"�[39m�[38;5;124mwaiting�[39m�[38;5;124m"�[39m] �[38;5;129;01mor�[39;00m state[�[38;5;124m"�[39m�[38;5;124mready�[39m�[38;5;124m"�[39m] �[38;5;129;01mor�[39;00m state[�[38;5;124m"�[39m�[38;5;124mrunning�[39m�[38;5;124m"�[39m]:
E �[1;32m 496�[0m fire_tasks(chunksize)
E �[0;32m--> 497�[0m �[38;5;28;01mfor�[39;00m key, res_info, failed �[38;5;129;01min�[39;00m �[43mqueue_get�[49m�[43m(�[49m�[43mqueue�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mresult�[49m�[43m(�[49m�[43m)�[49m:
E �[1;32m 498�[0m �[38;5;28;01mif�[39;00m failed:
E �[1;32m 499�[0m exc, tb �[38;5;241m=�[39m loads(res_info)
E
E File �[0;32m/usr/lib/python3.8/concurrent/futures/_base.py:437�[0m, in �[0;36mFuture.result�[0;34m(self, timeout)�[0m
E �[1;32m 435�[0m �[38;5;28;01mraise�[39;00m CancelledError()
E �[1;32m 436�[0m �[38;5;28;01melif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_state �[38;5;241m==�[39m FINISHED:
E �[0;32m--> 437�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m__get_result�[49m�[43m(�[49m�[43m)�[49m
E �[1;32m 439�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_condition�[38;5;241m.�[39mwait(timeout)
E �[1;32m 441�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_state �[38;5;129;01min�[39;00m [CANCELLED, CANCELLED_AND_NOTIFIED]:
E
E File �[0;32m/usr/lib/python3.8/concurrent/futures/_base.py:389�[0m, in �[0;36mFuture.__get_result�[0;34m(self)�[0m
E �[1;32m 387�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_exception:
E �[1;32m 388�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 389�[0m �[38;5;28;01mraise�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_exception
E �[1;32m 390�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 391�[0m �[38;5;66;03m# Break a reference cycle with the exception in self._exception�[39;00m
E �[1;32m 392�[0m �[38;5;28mself�[39m �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:539�[0m, in �[0;36mSynchronousExecutor.submit�[0;34m(self, fn, args, **kwargs)�[0m
E �[1;32m 537�[0m fut �[38;5;241m=�[39m Future()
E �[1;32m 538�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 539�[0m fut�[38;5;241m.�[39mset_result(�[43mfn�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m)
E �[1;32m 540�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mBaseException�[39;00m �[38;5;28;01mas�[39;00m e:
E �[1;32m 541�[0m fut�[38;5;241m.�[39mset_exception(e)
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:235�[0m, in �[0;36mbatch_execute_tasks�[0;34m(it)�[0m
E �[1;32m 231�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mbatch_execute_tasks�[39m(it):
E �[1;32m 232�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 233�[0m �[38;5;124;03m Batch computing of multiple tasks with execute_task�[39;00m
E �[1;32m 234�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 235�[0m �[38;5;28;01mreturn�[39;00m [execute_task(�[38;5;241m
�[39ma) �[38;5;28;01mfor�[39;00m a �[38;5;129;01min�[39;00m it]
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:235�[0m, in �[0;36m�[0;34m(.0)�[0m
E �[1;32m 231�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mbatch_execute_tasks�[39m(it):
E �[1;32m 232�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 233�[0m �[38;5;124;03m Batch computing of multiple tasks with execute_task�[39;00m
E �[1;32m 234�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 235�[0m �[38;5;28;01mreturn�[39;00m [�[43mexecute_task�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43ma�[49m�[43m)�[49m �[38;5;28;01mfor�[39;00m a �[38;5;129;01min�[39;00m it]
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:226�[0m, in �[0;36mexecute_task�[0;34m(key, task_info, dumps, loads, get_id, pack_exception)�[0m
E �[1;32m 224�[0m failed �[38;5;241m=�[39m �[38;5;28;01mFalse�[39;00m
E �[1;32m 225�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mBaseException�[39;00m �[38;5;28;01mas�[39;00m e:
E �[0;32m--> 226�[0m result �[38;5;241m=�[39m �[43mpack_exception�[49m�[43m(�[49m�[43me�[49m�[43m,�[49m�[43m �[49m�[43mdumps�[49m�[43m)�[49m
E �[1;32m 227�[0m failed �[38;5;241m=�[39m �[38;5;28;01mTrue�[39;00m
E �[1;32m 228�[0m �[38;5;28;01mreturn�[39;00m key, result, failed
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:221�[0m, in �[0;36mexecute_task�[0;34m(key, task_info, dumps, loads, get_id, pack_exception)�[0m
E �[1;32m 219�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 220�[0m task, data �[38;5;241m=�[39m loads(task_info)
E �[0;32m--> 221�[0m result �[38;5;241m=�[39m �[43m_execute_task�[49m�[43m(�[49m�[43mtask�[49m�[43m,�[49m�[43m �[49m�[43mdata�[49m�[43m)�[49m
E �[1;32m 222�[0m �[38;5;28mid�[39m �[38;5;241m=�[39m get_id()
E �[1;32m 223�[0m result �[38;5;241m=�[39m dumps((result, �[38;5;28mid�[39m))
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/core.py:119�[0m, in �[0;36m_execute_task�[0;34m(arg, cache, dsk)�[0m
E �[1;32m 115�[0m func, args �[38;5;241m=�[39m arg[�[38;5;241m0�[39m], arg[�[38;5;241m1�[39m:]
E �[1;32m 116�[0m �[38;5;66;03m# Note: Don't assign the subtask results to a variable. numpy detects�[39;00m
E �[1;32m 117�[0m �[38;5;66;03m# temporaries by their reference count and can execute certain�[39;00m
E �[1;32m 118�[0m �[38;5;66;03m# operations in-place.�[39;00m
E �[0;32m--> 119�[0m �[38;5;28;01mreturn�[39;00m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43m(�[49m�[43m_execute_task�[49m�[43m(�[49m�[43ma�[49m�[43m,�[49m�[43m �[49m�[43mcache�[49m�[43m)�[49m�[43m �[49m�[38;5;28;43;01mfor�[39;49;00m�[43m �[49m�[43ma�[49m�[43m �[49m�[38;5;129;43;01min�[39;49;00m�[43m �[49m�[43margs�[49m�[43m)�[49m�[43m)�[49m
E �[1;32m 120�[0m �[38;5;28;01melif�[39;00m �[38;5;129;01mnot�[39;00m ishashable(arg):
E �[1;32m 121�[0m �[38;5;28;01mreturn�[39;00m arg
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/optimization.py:990�[0m, in �[0;36mSubgraphCallable.__call__�[0;34m(self, args)�[0m
E �[1;32m 988�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mlen�[39m(args) �[38;5;241m==�[39m �[38;5;28mlen�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39minkeys):
E �[1;32m 989�[0m �[38;5;28;01mraise�[39;00m �[38;5;167;01mValueError�[39;00m(�[38;5;124m"�[39m�[38;5;124mExpected �[39m�[38;5;132;01m%d�[39;00m�[38;5;124m args, got �[39m�[38;5;132;01m%d�[39;00m�[38;5;124m"�[39m �[38;5;241m%�[39m (�[38;5;28mlen�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39minkeys), �[38;5;28mlen�[39m(args)))
E �[0;32m--> 990�[0m �[38;5;28;01mreturn�[39;00m �[43mcore�[49m�[38;5;241;43m.�[39;49m�[43mget�[49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mdsk�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43moutkey�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mdict�[39;49m�[43m(�[49m�[38;5;28;43mzip�[39;49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43minkeys�[49m�[43m,�[49m�[43m �[49m�[43margs�[49m�[43m)�[49m�[43m)�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/core.py:149�[0m, in �[0;36mget�[0;34m(dsk, out, cache)�[0m
E �[1;32m 147�[0m �[38;5;28;01mfor�[39;00m key �[38;5;129;01min�[39;00m toposort(dsk):
E �[1;32m 148�[0m task �[38;5;241m=�[39m dsk[key]
E �[0;32m--> 149�[0m result �[38;5;241m=�[39m �[43m_execute_task�[49m�[43m(�[49m�[43mtask�[49m�[43m,�[49m�[43m �[49m�[43mcache�[49m�[43m)�[49m
E �[1;32m 150�[0m cache[key] �[38;5;241m=�[39m result
E �[1;32m 151�[0m result �[38;5;241m=�[39m _execute_task(out, cache)
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/core.py:119�[0m, in �[0;36m_execute_task�[0;34m(arg, cache, dsk)�[0m
E �[1;32m 115�[0m func, args �[38;5;241m=�[39m arg[�[38;5;241m0�[39m], arg[�[38;5;241m1�[39m:]
E �[1;32m 116�[0m �[38;5;66;03m# Note: Don't assign the subtask results to a variable. numpy detects�[39;00m
E �[1;32m 117�[0m �[38;5;66;03m# temporaries by their reference count and can execute certain�[39;00m
E �[1;32m 118�[0m �[38;5;66;03m# operations in-place.�[39;00m
E �[0;32m--> 119�[0m �[38;5;28;01mreturn�[39;00m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43m(�[49m�[43m_execute_task�[49m�[43m(�[49m�[43ma�[49m�[43m,�[49m�[43m �[49m�[43mcache�[49m�[43m)�[49m�[43m �[49m�[38;5;28;43;01mfor�[39;49;00m�[43m �[49m�[43ma�[49m�[43m �[49m�[38;5;129;43;01min�[39;49;00m�[43m �[49m�[43margs�[49m�[43m)�[49m�[43m)�[49m
E �[1;32m 120�[0m �[38;5;28;01melif�[39;00m �[38;5;129;01mnot�[39;00m ishashable(arg):
E �[1;32m 121�[0m �[38;5;28;01mreturn�[39;00m arg
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/utils.py:39�[0m, in �[0;36mapply�[0;34m(func, args, kwargs)�[0m
E �[1;32m 37�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mapply�[39m(func, args, kwargs�[38;5;241m=�[39m�[38;5;28;01mNone�[39;00m):
E �[1;32m 38�[0m �[38;5;28;01mif�[39;00m kwargs:
E �[0;32m---> 39�[0m �[38;5;28;01mreturn�[39;00m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 40�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 41�[0m �[38;5;28;01mreturn�[39;00m func(�[38;5;241m
�[39margs)
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:69�[0m, in �[0;36mLocalExecutor.transform�[0;34m(self, transformable, graph, output_dtypes, additional_columns, capture_dtypes)�[0m
E �[1;32m 66�[0m output_data �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 68�[0m �[38;5;28;01mfor�[39;00m node �[38;5;129;01min�[39;00m nodes:
E �[0;32m---> 69�[0m input_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_build_input_data�[49m�[43m(�[49m�[43mnode�[49m�[43m,�[49m�[43m �[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 71�[0m �[38;5;28;01mif�[39;00m node�[38;5;241m.�[39mop:
E �[1;32m 72�[0m transformed_data �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_transform_data(
E �[1;32m 73�[0m node, input_data, capture_dtypes�[38;5;241m=�[39mcapture_dtypes
E �[1;32m 74�[0m )
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:116�[0m, in �[0;36mLocalExecutor._build_input_data�[0;34m(self, node, transformable, capture_dtypes)�[0m
E �[1;32m 114�[0m �[38;5;28;01mfor�[39;00m parent �[38;5;129;01min�[39;00m node�[38;5;241m.�[39mparents_with_dependencies:
E �[1;32m 115�[0m parent_output_cols �[38;5;241m=�[39m _get_unique(parent�[38;5;241m.�[39moutput_schema�[38;5;241m.�[39mcolumn_names)
E �[0;32m--> 116�[0m parent_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtransform�[49m�[43m(�[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43m[�[49m�[43mparent�[49m�[43m]�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 117�[0m �[38;5;28;01mif�[39;00m input_data �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m �[38;5;129;01mor�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mlen�[39m(input_data):
E �[1;32m 118�[0m input_data �[38;5;241m=�[39m parent_data[parent_output_cols]
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:69�[0m, in �[0;36mLocalExecutor.transform�[0;34m(self, transformable, graph, output_dtypes, additional_columns, capture_dtypes)�[0m
E �[1;32m 66�[0m output_data �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 68�[0m �[38;5;28;01mfor�[39;00m node �[38;5;129;01min�[39;00m nodes:
E �[0;32m---> 69�[0m input_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_build_input_data�[49m�[43m(�[49m�[43mnode�[49m�[43m,�[49m�[43m �[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 71�[0m �[38;5;28;01mif�[39;00m node�[38;5;241m.�[39mop:
E �[1;32m 72�[0m transformed_data �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_transform_data(
E �[1;32m 73�[0m node, input_data, capture_dtypes�[38;5;241m=�[39mcapture_dtypes
E �[1;32m 74�[0m )
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:116�[0m, in �[0;36mLocalExecutor._build_input_data�[0;34m(self, node, transformable, capture_dtypes)�[0m
E �[1;32m 114�[0m �[38;5;28;01mfor�[39;00m parent �[38;5;129;01min�[39;00m node�[38;5;241m.�[39mparents_with_dependencies:
E �[1;32m 115�[0m parent_output_cols �[38;5;241m=�[39m _get_unique(parent�[38;5;241m.�[39moutput_schema�[38;5;241m.�[39mcolumn_names)
E �[0;32m--> 116�[0m parent_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtransform�[49m�[43m(�[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43m[�[49m�[43mparent�[49m�[43m]�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 117�[0m �[38;5;28;01mif�[39;00m input_data �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m �[38;5;129;01mor�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mlen�[39m(input_data):
E �[1;32m 118�[0m input_data �[38;5;241m=�[39m parent_data[parent_output_cols]
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:69�[0m, in �[0;36mLocalExecutor.transform�[0;34m(self, transformable, graph, output_dtypes, additional_columns, capture_dtypes)�[0m
E �[1;32m 66�[0m output_data �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 68�[0m �[38;5;28;01mfor�[39;00m node �[38;5;129;01min�[39;00m nodes:
E �[0;32m---> 69�[0m input_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_build_input_data�[49m�[43m(�[49m�[43mnode�[49m�[43m,�[49m�[43m �[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 71�[0m �[38;5;28;01mif�[39;00m node�[38;5;241m.�[39mop:
E �[1;32m 72�[0m transformed_data �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_transform_data(
E �[1;32m 73�[0m node, input_data, capture_dtypes�[38;5;241m=�[39mcapture_dtypes
E �[1;32m 74�[0m )
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:122�[0m, in �[0;36mLocalExecutor._build_input_data�[0;34m(self, node, transformable, capture_dtypes)�[0m
E �[1;32m 120�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 121�[0m new_columns �[38;5;241m=�[39m �[38;5;28mset�[39m(parent_output_cols) �[38;5;241m-�[39m seen_columns
E �[0;32m--> 122�[0m input_data �[38;5;241m=�[39m �[43mconcat_columns�[49m�[43m(�[49m�[43m[�[49m�[43minput_data�[49m�[43m,�[49m�[43m �[49m�[43mparent_data�[49m�[43m[�[49m�[38;5;28;43mlist�[39;49m�[43m(�[49m�[43mnew_columns�[49m�[43m)�[49m�[43m]�[49m�[43m]�[49m�[43m)�[49m
E �[1;32m 123�[0m seen_columns�[38;5;241m.�[39mupdate(new_columns)
E �[1;32m 125�[0m �[38;5;66;03m# Check for additional input columns that aren't generated by parents�[39;00m
E �[1;32m 126�[0m �[38;5;66;03m# and fetch them from the root DataFrame or DictArray�[39;00m
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/core/dispatch.py:353�[0m, in �[0;36mconcat_columns�[0;34m(args)�[0m
E �[1;32m 351�[0m �[38;5;28;01mif�[39;00m �[38;5;28mlen�[39m(args) �[38;5;241m==�[39m �[38;5;241m1�[39m:
E �[1;32m 352�[0m �[38;5;28;01mreturn�[39;00m args[�[38;5;241m0�[39m]
E �[0;32m--> 353�[0m �[38;5;28;01melif�[39;00m �[38;5;28;43misinstance�[39;49m�[43m(�[49m�[43margs�[49m�[43m[�[49m�[38;5;241;43m0�[39;49m�[43m]�[49m�[43m,�[49m�[43m �[49m�[43mDataFrameLike�[49m�[43m)�[49m:
E �[1;32m 354�[0m _lib �[38;5;241m=�[39m cudf �[38;5;28;01mif�[39;00m HAS_GPU �[38;5;129;01mand�[39;00m �[38;5;28misinstance�[39m(args[�[38;5;241m0�[39m], cudf�[38;5;241m.�[39mDataFrame) �[38;5;28;01melse�[39;00m pd
E �[1;32m 355�[0m �[38;5;28;01mreturn�[39;00m _lib�[38;5;241m.�[39mconcat(
E �[1;32m 356�[0m [a�[38;5;241m.�[39mreset_index(drop�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m) �[38;5;28;01mfor�[39;00m a �[38;5;129;01min�[39;00m args],
E �[1;32m 357�[0m axis�[38;5;241m=�[39m�[38;5;241m1�[39m,
E �[1;32m 358�[0m )
E
E File �[0;32m/usr/lib/python3.8/typing.py:1017�[0m, in �[0;36m_ProtocolMeta.__instancecheck__�[0;34m(cls, instance)�[0m
E �[1;32m 1015�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mTrue�[39;00m
E �[1;32m 1016�[0m �[38;5;28;01mif�[39;00m �[38;5;28mcls�[39m�[38;5;241m.�[39m_is_protocol:
E �[0;32m-> 1017�[0m �[38;5;28;01mif�[39;00m �[38;5;28;43mall�[39;49m�[43m(�[49m�[38;5;28;43mhasattr�[39;49m�[43m(�[49m�[43minstance�[49m�[43m,�[49m�[43m �[49m�[43mattr�[49m�[43m)�[49m�[43m �[49m�[38;5;129;43;01mand�[39;49;00m
E �[1;32m 1018�[0m �[43m �[49m�[38;5;66;43;03m# All methods can be blocked by setting them to None.�[39;49;00m
E �[1;32m 1019�[0m �[43m �[49m�[43m(�[49m�[38;5;129;43;01mnot�[39;49;00m�[43m �[49m�[43mcallable�[49m�[43m(�[49m�[38;5;28;43mgetattr�[39;49m�[43m(�[49m�[38;5;28;43mcls�[39;49m�[43m,�[49m�[43m �[49m�[43mattr�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43;01mNone�[39;49;00m�[43m)�[49m�[43m)�[49m�[43m �[49m�[38;5;129;43;01mor�[39;49;00m
E �[1;32m 1020�[0m �[43m �[49m�[38;5;28;43mgetattr�[39;49m�[43m(�[49m�[43minstance�[49m�[43m,�[49m�[43m �[49m�[43mattr�[49m�[43m)�[49m�[43m �[49m�[38;5;129;43;01mis�[39;49;00m�[43m �[49m�[38;5;129;43;01mnot�[39;49;00m�[43m �[49m�[38;5;28;43;01mNone�[39;49;00m�[43m)�[49m
E �[1;32m 1021�[0m �[43m �[49m�[38;5;28;43;01mfor�[39;49;00m�[43m �[49m�[43mattr�[49m�[43m �[49m�[38;5;129;43;01min�[39;49;00m�[43m �[49m�[43m_get_protocol_attrs�[49m�[43m(�[49m�[38;5;28;43mcls�[39;49m�[43m)�[49m�[43m)�[49m:
E �[1;32m 1022�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mTrue�[39;00m
E �[1;32m 1023�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28msuper�[39m()�[38;5;241m.�[39m�[38;5;21m__instancecheck__�[39m(instance)
E
E File �[0;32m/usr/lib/python3.8/typing.py:1017�[0m, in �[0;36m�[0;34m(.0)�[0m
E �[1;32m 1015�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mTrue�[39;00m
E �[1;32m 1016�[0m �[38;5;28;01mif�[39;00m �[38;5;28mcls�[39m�[38;5;241m.�[39m_is_protocol:
E �[0;32m-> 1017�[0m �[38;5;28;01mif�[39;00m �[38;5;28mall�[39m(�[38;5;28;43mhasattr�[39;49m�[43m(�[49m�[43minstance�[49m�[43m,�[49m�[43m �[49m�[43mattr�[49m�[43m)�[49m �[38;5;129;01mand�[39;00m
E �[1;32m 1018�[0m �[38;5;66;03m# All methods can be blocked by setting them to None.�[39;00m
E �[1;32m 1019�[0m (�[38;5;129;01mnot�[39;00m callable(�[38;5;28mgetattr�[39m(�[38;5;28mcls�[39m, attr, �[38;5;28;01mNone�[39;00m)) �[38;5;129;01mor�[39;00m
E �[1;32m 1020�[0m �[38;5;28mgetattr�[39m(instance, attr) �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m)
E �[1;32m 1021�[0m �[38;5;28;01mfor�[39;00m attr �[38;5;129;01min�[39;00m _get_protocol_attrs(�[38;5;28mcls�[39m)):
E �[1;32m 1022�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mTrue�[39;00m
E �[1;32m 1023�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28msuper�[39m()�[38;5;241m.�[39m�[38;5;21m__instancecheck__�[39m(instance)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/core/frame.py:455�[0m, in �[0;36mFrame.values�[0;34m(self)�[0m
E �[1;32m 442�[0m �[38;5;129m@property�[39m
E �[1;32m 443�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mvalues�[39m(�[38;5;28mself�[39m):
E �[1;32m 444�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 445�[0m �[38;5;124;03m Return a CuPy representation of the DataFrame.�[39;00m
E �[1;32m 446�[0m
E �[0;32m (...)�[0m
E �[1;32m 453�[0m �[38;5;124;03m The values of the DataFrame.�[39;00m
E �[1;32m 454�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 455�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mto_cupy�[49m�[43m(�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/core/frame.py:555�[0m, in �[0;36mFrame.to_cupy�[0;34m(self, dtype, copy, na_value)�[0m
E �[1;32m 529�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 530�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mto_cupy�[39m(
E �[1;32m 531�[0m �[38;5;28mself�[39m,
E �[0;32m (...)�[0m
E �[1;32m 534�[0m na_value�[38;5;241m=�[39m�[38;5;28;01mNone�[39;00m,
E �[1;32m 535�[0m ) �[38;5;241m-�[39m�[38;5;241m>�[39m cupy�[38;5;241m.�[39mndarray:
E �[1;32m 536�[0m �[38;5;124;03m"""Convert the Frame to a CuPy array.�[39;00m
E �[1;32m 537�[0m
E �[1;32m 538�[0m �[38;5;124;03m Parameters�[39;00m
E �[0;32m (...)�[0m
E �[1;32m 553�[0m �[38;5;124;03m cupy.ndarray�[39;00m
E �[1;32m 554�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 555�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_to_array�[49m�[43m(�[49m
E �[1;32m 556�[0m �[43m �[49m�[43m(�[49m�[38;5;28;43;01mlambda�[39;49;00m�[43m �[49m�[43mcol�[49m�[43m:�[49m�[43m �[49m�[43mcol�[49m�[38;5;241;43m.�[39;49m�[43mvalues�[49m�[38;5;241;43m.�[39;49m�[43mcopy�[49m�[43m(�[49m�[43m)�[49m�[43m)�[49m
E �[1;32m 557�[0m �[43m �[49m�[38;5;28;43;01mif�[39;49;00m�[43m �[49m�[43mcopy�[49m
E �[1;32m 558�[0m �[43m �[49m�[38;5;28;43;01melse�[39;49;00m�[43m �[49m�[43m(�[49m�[38;5;28;43;01mlambda�[39;49;00m�[43m �[49m�[43mcol�[49m�[43m:�[49m�[43m �[49m�[43mcol�[49m�[38;5;241;43m.�[39;49m�[43mvalues�[49m�[43m)�[49m�[43m,�[49m
E �[1;32m 559�[0m �[43m �[49m�[43mcupy�[49m�[38;5;241;43m.�[39;49m�[43mempty�[49m�[43m,�[49m
E �[1;32m 560�[0m �[43m �[49m�[43mdtype�[49m�[43m,�[49m
E �[1;32m 561�[0m �[43m �[49m�[43mna_value�[49m�[43m,�[49m
E �[1;32m 562�[0m �[43m �[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/core/frame.py:509�[0m, in �[0;36mFrame._to_array�[0;34m(self, get_column_values, make_empty_matrix, dtype, na_value)�[0m
E �[1;32m 504�[0m �[38;5;28;01mreturn�[39;00m make_empty_matrix(
E �[1;32m 505�[0m shape�[38;5;241m=�[39m(�[38;5;241m0�[39m, �[38;5;241m0�[39m), dtype�[38;5;241m=�[39mnp�[38;5;241m.�[39mdtype(�[38;5;124m"�[39m�[38;5;124mfloat64�[39m�[38;5;124m"�[39m), order�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124mF�[39m�[38;5;124m"�[39m
E �[1;32m 506�[0m )
E �[1;32m 508�[0m �[38;5;28;01mif�[39;00m dtype �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m:
E �[0;32m--> 509�[0m dtype �[38;5;241m=�[39m �[43mfind_common_type�[49m�[43m(�[49m
E �[1;32m 510�[0m �[43m �[49m�[43m[�[49m�[43mcol�[49m�[38;5;241;43m.�[39;49m�[43mdtype�[49m�[43m �[49m�[38;5;28;43;01mfor�[39;49;00m�[43m �[49m�[43mcol�[49m�[43m �[49m�[38;5;129;43;01min�[39;49;00m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_data�[49m�[38;5;241;43m.�[39;49m�[43mvalues�[49m�[43m(�[49m�[43m)�[49m�[43m]�[49m
E �[1;32m 511�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 513�[0m matrix �[38;5;241m=�[39m make_empty_matrix(
E �[1;32m 514�[0m shape�[38;5;241m=�[39m(�[38;5;28mlen�[39m(�[38;5;28mself�[39m), ncol), dtype�[38;5;241m=�[39mdtype, order�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124mF�[39m�[38;5;124m"�[39m
E �[1;32m 515�[0m )
E �[1;32m 516�[0m �[38;5;28;01mfor�[39;00m i, col �[38;5;129;01min�[39;00m �[38;5;28menumerate�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39m_data�[38;5;241m.�[39mvalues()):
E �[1;32m 517�[0m �[38;5;66;03m# TODO: col.values may fail if there is nullable data or an�[39;00m
E �[1;32m 518�[0m �[38;5;66;03m# unsupported dtype. We may want to catch and provide a more�[39;00m
E �[1;32m 519�[0m �[38;5;66;03m# suitable error.�[39;00m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/utils/dtypes.py:575�[0m, in �[0;36mfind_common_type�[0;34m(dtypes)�[0m
E �[1;32m 572�[0m dtypes �[38;5;241m=�[39m dtypes �[38;5;241m-�[39m dt_dtypes
E �[1;32m 573�[0m dtypes�[38;5;241m.�[39madd(np�[38;5;241m.�[39mresult_type(�[38;5;241m
�[39mdt_dtypes))
E �[0;32m--> 575�[0m td_dtypes �[38;5;241m=�[39m �[38;5;28;43mset�[39;49m�[43m(�[49m
E �[1;32m 576�[0m �[43m �[49m�[38;5;28;43mfilter�[39;49m�[43m(�[49m�[38;5;28;43;01mlambda�[39;49;00m�[43m �[49m�[43mt�[49m�[43m:�[49m�[43m �[49m�[43mpd�[49m�[38;5;241;43m.�[39;49m�[43mapi�[49m�[38;5;241;43m.�[39;49m�[43mtypes�[49m�[38;5;241;43m.�[39;49m�[43mis_timedelta64_dtype�[49m�[43m(�[49m�[43mt�[49m�[43m)�[49m�[43m,�[49m�[43m �[49m�[43mdtypes�[49m�[43m)�[49m
E �[1;32m 577�[0m �[43m�[49m�[43m)�[49m
E �[1;32m 578�[0m �[38;5;28;01mif�[39;00m �[38;5;28mlen�[39m(td_dtypes) �[38;5;241m>�[39m �[38;5;241m0�[39m:
E �[1;32m 579�[0m dtypes �[38;5;241m=�[39m dtypes �[38;5;241m-�[39m td_dtypes
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/utils/dtypes.py:576�[0m, in �[0;36mfind_common_type..�[0;34m(t)�[0m
E �[1;32m 572�[0m dtypes �[38;5;241m=�[39m dtypes �[38;5;241m-�[39m dt_dtypes
E �[1;32m 573�[0m dtypes�[38;5;241m.�[39madd(np�[38;5;241m.�[39mresult_type(�[38;5;241m�[39mdt_dtypes))
E �[1;32m 575�[0m td_dtypes �[38;5;241m=�[39m �[38;5;28mset�[39m(
E �[0;32m--> 576�[0m �[38;5;28mfilter�[39m(�[38;5;28;01mlambda�[39;00m t: �[43mpd�[49m�[38;5;241;43m.�[39;49m�[43mapi�[49m�[38;5;241;43m.�[39;49m�[43mtypes�[49m�[38;5;241;43m.�[39;49m�[43mis_timedelta64_dtype�[49m�[43m(�[49m�[43mt�[49m�[43m)�[49m, dtypes)
E �[1;32m 577�[0m )
E �[1;32m 578�[0m �[38;5;28;01mif�[39;00m �[38;5;28mlen�[39m(td_dtypes) �[38;5;241m>�[39m �[38;5;241m0�[39m:
E �[1;32m 579�[0m dtypes �[38;5;241m=�[39m dtypes �[38;5;241m-�[39m td_dtypes
E
E File �[0;32m~/.local/lib/python3.8/site-packages/pandas/core/dtypes/common.py:419�[0m, in �[0;36mis_timedelta64_dtype�[0;34m(arr_or_dtype)�[0m
E �[1;32m 415�[0m �[38;5;28;01mif�[39;00m �[38;5;28misinstance�[39m(arr_or_dtype, np�[38;5;241m.�[39mdtype):
E �[1;32m 416�[0m �[38;5;66;03m# GH#33400 fastpath for dtype object�[39;00m
E �[1;32m 417�[0m �[38;5;28;01mreturn�[39;00m arr_or_dtype�[38;5;241m.�[39mkind �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mm�[39m�[38;5;124m"�[39m
E �[0;32m--> 419�[0m �[38;5;28;01mreturn�[39;00m �[43m_is_dtype_type�[49m�[43m(�[49m�[43marr_or_dtype�[49m�[43m,�[49m�[43m �[49m�[43mclasses�[49m�[43m(�[49m�[43mnp�[49m�[38;5;241;43m.�[39;49m�[43mtimedelta64�[49m�[43m)�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/pandas/core/dtypes/common.py:1619�[0m, in �[0;36m_is_dtype_type�[0;34m(arr_or_dtype, condition)�[0m
E �[1;32m 1615�[0m �[38;5;28;01mreturn�[39;00m condition(�[38;5;28mtype�[39m(�[38;5;28;01mNone�[39;00m))
E �[1;32m 1617�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mFalse�[39;00m
E �[0;32m-> 1619�[0m �[38;5;28;01mreturn�[39;00m �[43mcondition�[49m�[43m(�[49m�[43mtipo�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/pandas/core/dtypes/common.py:146�[0m, in �[0;36mclasses..�[0;34m(tipo)�[0m
E �[1;32m 144�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mclasses�[39m(�[38;5;241m
�[39mklasses) �[38;5;241m-�[39m�[38;5;241m>�[39m Callable:
E �[1;32m 145�[0m �[38;5;124;03m"""evaluate if the tipo is a subclass of the klasses"""�[39;00m
E �[0;32m--> 146�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mlambda�[39;00m tipo: �[38;5;28;43missubclass�[39;49m�[43m(�[49m�[43mtipo�[49m�[43m,�[49m�[43m �[49m�[43mklasses�[49m�[43m)�[49m
E
E �[0;31mTypeError�[0m: issubclass() arg 1 must be a class
E TypeError: issubclass() arg 1 must be a class

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-09 14:54:07.133758: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-09 14:54:10.616012: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-09 14:54:10.616125: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-09 14:54:10.616943: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-09 14:54:10.617006: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13851 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-09 14:54:10.617621: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-09 14:54:10.617673: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13851 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-09 14:54:10.618270: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-09 14:54:10.618321: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13851 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 15 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 9 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:968: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filetltualpk.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 107 80 25%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 50 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 753 102 86%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11552 2380 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 862 passed, 13 skipped, 1433 warnings in 1766.19s (0:29:26) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins10773941165164568073.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit f11dd8afed1f8b59e40e47ebbd3e9621d1201bc5, no merge conflicts.
Running as SYSTEM
Setting status of f11dd8afed1f8b59e40e47ebbd3e9621d1201bc5 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1794/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse f11dd8afed1f8b59e40e47ebbd3e9621d1201bc5^{commit} # timeout=10
Checking out Revision f11dd8afed1f8b59e40e47ebbd3e9621d1201bc5 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f f11dd8afed1f8b59e40e47ebbd3e9621d1201bc5 # timeout=10
Commit message: "update ETL, update to new api in MLP and BiLSTM"
 > git rev-list --no-walk 644b568e69199b92fc5597a2ac165ea46fdebcc0 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins10718997691870515236.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu inst-nodeps: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/2/merlin-models-0.9.0+42.gf11dd8af.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.5,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.1,boto3==1.24.75,botocore==1.29.5,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.5.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.2,merlin-models==0.9.0+42.gf11dd8af,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.982,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,nvtabular @ git+https://github.com/NVIDIA-Merlin/NVTabular.git@ba4c14159a8e858c8998d4158a4376e65a8fa266,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.1,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.2.1,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.43,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.0,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='3851801049'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-v4s1wpsj
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-v4s1wpsj
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit c1ddc198bc1b0c39b5008a4ec07f2b7f02fd22c1
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (2022.5.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (0.55.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (4.64.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+8.gc1ddc19) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (1.10.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+8.gc1ddc19) (7.0.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (0.4.3)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (1.2.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (2.4.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (5.8.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (6.2)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+8.gc1ddc19) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+8.gc1ddc19) (65.4.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+8.gc1ddc19) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+8.gc1ddc19) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+8.gc1ddc19) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+8.gc1ddc19) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+8.gc1ddc19) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3.1
[notice] To update, run: pip install --upgrade pip
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-k9bnnzf0
Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-k9bnnzf0
Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
Installing build dependencies: started
Installing build dependencies: finished with status 'done'
Getting requirements to build wheel: started
Getting requirements to build wheel: finished with status 'done'
Preparing metadata (pyproject.toml): started
Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: merlin-dataloader>=0.0.2 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2+3.gb6f9a67)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+8.gc1ddc19)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.4.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)

[notice] A new release of pip available: 22.2.2 -> 22.3.1
[notice] To update, run: pip install --upgrade pip
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 876 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s......................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ..................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 81%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7ff7e8120a30>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7ff7e8120a30>
cell = {'cell_type': 'code', 'execution_count': 15, 'id': '65f5c222', 'metadata': {'execution': {'iopub.status.busy': '2022-1...in(DATA_FOLDER, "train/"), output_files=2)\nworkflow.transform(valid).to_parquet(os.path.join(DATA_FOLDER, "valid/"))'}
cell_index = 29
exec_reply = {'buffers': [], 'content': {'ename': 'TypeError', 'engine_info': {'engine_id': -1, 'engine_uuid': '3a69c1e9-5766-4c82-...e, 'engine': '3a69c1e9-5766-4c82-98c7-3975bd014dd8', 'started': '2022-11-09T17:15:19.558272Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E # fit data
E workflow.fit(train)
E
E # transform and save data
E workflow.transform(train).to_parquet(os.path.join(DATA_FOLDER, "train/"), output_files=2)
E workflow.transform(valid).to_parquet(os.path.join(DATA_FOLDER, "valid/"))
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mTypeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [15], line 2�[0m
E �[1;32m 1�[0m �[38;5;66;03m# fit data�[39;00m
E �[0;32m----> 2�[0m �[43mworkflow�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mtrain�[49m�[43m)�[49m
E �[1;32m 4�[0m �[38;5;66;03m# transform and save data�[39;00m
E �[1;32m 5�[0m workflow�[38;5;241m.�[39mtransform(train)�[38;5;241m.�[39mto_parquet(os�[38;5;241m.�[39mpath�[38;5;241m.�[39mjoin(DATA_FOLDER, �[38;5;124m"�[39m�[38;5;124mtrain/�[39m�[38;5;124m"�[39m), output_files�[38;5;241m=�[39m�[38;5;241m2�[39m)
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/nvtabular/workflow/workflow.py:209�[0m, in �[0;36mWorkflow.fit�[0;34m(self, dataset)�[0m
E �[1;32m 205�[0m dependencies�[38;5;241m.�[39mdifference_update(current_phase)
E �[1;32m 207�[0m �[38;5;66;03m# This captures the output dtypes of operators like LambdaOp where�[39;00m
E �[1;32m 208�[0m �[38;5;66;03m# the dtype can't be determined without running the transform�[39;00m
E �[0;32m--> 209�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_transform_impl�[49m�[43m(�[49m�[43mdataset�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[38;5;28;43;01mTrue�[39;49;00m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43msample_dtypes�[49m�[43m(�[49m�[43m)�[49m
E �[1;32m 210�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mgraph�[38;5;241m.�[39mconstruct_schema(dataset�[38;5;241m.�[39mschema, preserve_dtypes�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[1;32m 212�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28mself�[39m
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1147�[0m, in �[0;36mDataset.sample_dtypes�[0;34m(self, n, annotate_lists)�[0m
E �[1;32m 1140�[0m �[38;5;124;03m"""Return the real dtypes of the Dataset�[39;00m
E �[1;32m 1141�[0m
E �[1;32m 1142�[0m �[38;5;124;03mUse cached metadata if this operation was�[39;00m
E �[1;32m 1143�[0m �[38;5;124;03malready performed. Otherwise, call down to the�[39;00m
E �[1;32m 1144�[0m �[38;5;124;03munderlying engine for sampling logic.�[39;00m
E �[1;32m 1145�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 1146�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_real_meta�[38;5;241m.�[39mget(n, �[38;5;28;01mNone�[39;00m) �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m:
E �[0;32m-> 1147�[0m _real_meta �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mengine�[49m�[38;5;241;43m.�[39;49m�[43msample_data�[49m�[43m(�[49m�[43mn�[49m�[38;5;241;43m=�[39;49m�[43mn�[49m�[43m)�[49m
E �[1;32m 1148�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mdtypes:
E �[1;32m 1149�[0m _real_meta �[38;5;241m=�[39m _set_dtypes(_real_meta, �[38;5;28mself�[39m�[38;5;241m.�[39mdtypes)
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71�[0m, in �[0;36mDatasetEngine.sample_data�[0;34m(self, n)�[0m
E �[1;32m 69�[0m _ddf �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39mto_ddf()
E �[1;32m 70�[0m �[38;5;28;01mfor�[39;00m partition_index �[38;5;129;01min�[39;00m �[38;5;28mrange�[39m(_ddf�[38;5;241m.�[39mnpartitions):
E �[0;32m---> 71�[0m head �[38;5;241m=�[39m �[43m_ddf�[49m�[38;5;241;43m.�[39;49m�[43mpartitions�[49m�[43m[�[49m�[43mpartition_index�[49m�[43m]�[49m�[38;5;241;43m.�[39;49m�[43mhead�[49m�[43m(�[49m�[43mn�[49m�[43m)�[49m
E �[1;32m 72�[0m �[38;5;28;01mif�[39;00m �[38;5;28mlen�[39m(head):
E �[1;32m 73�[0m �[38;5;28;01mreturn�[39;00m head
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196�[0m, in �[0;36m_Frame.head�[0;34m(self, n, npartitions, compute)�[0m
E �[1;32m 1194�[0m �[38;5;66;03m# No need to warn if we're already looking at all partitions�[39;00m
E �[1;32m 1195�[0m safe �[38;5;241m=�[39m npartitions �[38;5;241m!=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39mnpartitions
E �[0;32m-> 1196�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_head�[49m�[43m(�[49m�[43mn�[49m�[38;5;241;43m=�[39;49m�[43mn�[49m�[43m,�[49m�[43m �[49m�[43mnpartitions�[49m�[38;5;241;43m=�[39;49m�[43mnpartitions�[49m�[43m,�[49m�[43m �[49m�[43mcompute�[49m�[38;5;241;43m=�[39;49m�[43mcompute�[49m�[43m,�[49m�[43m �[49m�[43msafe�[49m�[38;5;241;43m=�[39;49m�[43msafe�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230�[0m, in �[0;36m_Frame.head�[0;34m(self, n, npartitions, compute, safe)�[0m
E �[1;32m 1225�[0m result �[38;5;241m=�[39m new_dd_object(
E �[1;32m 1226�[0m graph, name, �[38;5;28mself�[39m�[38;5;241m.�[39m_meta, [�[38;5;28mself�[39m�[38;5;241m.�[39mdivisions[�[38;5;241m0�[39m], �[38;5;28mself�[39m�[38;5;241m.�[39mdivisions[npartitions]]
E �[1;32m 1227�[0m )
E �[1;32m 1229�[0m �[38;5;28;01mif�[39;00m compute:
E �[0;32m-> 1230�[0m result �[38;5;241m=�[39m �[43mresult�[49m�[38;5;241;43m.�[39;49m�[43mcompute�[49m�[43m(�[49m�[43m)�[49m
E �[1;32m 1231�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/base.py:292�[0m, in �[0;36mDaskMethodsMixin.compute�[0;34m(self, **kwargs)�[0m
E �[1;32m 268�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mcompute�[39m(�[38;5;28mself�[39m, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 269�[0m �[38;5;124;03m"""Compute this dask collection�[39;00m
E �[1;32m 270�[0m
E �[1;32m 271�[0m �[38;5;124;03m This turns a lazy Dask collection into its in-memory equivalent.�[39;00m
E �[0;32m (...)�[0m
E �[1;32m 290�[0m �[38;5;124;03m dask.base.compute�[39;00m
E �[1;32m 291�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 292�[0m (result,) �[38;5;241m=�[39m �[43mcompute�[49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[43m,�[49m�[43m �[49m�[43mtraverse�[49m�[38;5;241;43m=�[39;49m�[38;5;28;43;01mFalse�[39;49;00m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 293�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/base.py:575�[0m, in �[0;36mcompute�[0;34m(traverse, optimize_graph, scheduler, get, *args, **kwargs)�[0m
E �[1;32m 572�[0m keys�[38;5;241m.�[39mappend(x�[38;5;241m.�[39m__dask_keys
())
E �[1;32m 573�[0m postcomputes�[38;5;241m.�[39mappend(x�[38;5;241m.�[39m__dask_postcompute
())
E �[0;32m--> 575�[0m results �[38;5;241m=�[39m �[43mschedule�[49m�[43m(�[49m�[43mdsk�[49m�[43m,�[49m�[43m �[49m�[43mkeys�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 576�[0m �[38;5;28;01mreturn�[39;00m repack([f(r, �[38;5;241m�[39ma) �[38;5;28;01mfor�[39;00m r, (f, a) �[38;5;129;01min�[39;00m �[38;5;28mzip�[39m(results, postcomputes)])
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:554�[0m, in �[0;36mget_sync�[0;34m(dsk, keys, **kwargs)�[0m
E �[1;32m 549�[0m �[38;5;124;03m"""A naive synchronous version of get_async�[39;00m
E �[1;32m 550�[0m
E �[1;32m 551�[0m �[38;5;124;03mCan be useful for debugging.�[39;00m
E �[1;32m 552�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 553�[0m kwargs�[38;5;241m.�[39mpop(�[38;5;124m"�[39m�[38;5;124mnum_workers�[39m�[38;5;124m"�[39m, �[38;5;28;01mNone�[39;00m) �[38;5;66;03m# if num_workers present, remove it�[39;00m
E �[0;32m--> 554�[0m �[38;5;28;01mreturn�[39;00m �[43mget_async�[49m�[43m(�[49m
E �[1;32m 555�[0m �[43m �[49m�[43msynchronous_executor�[49m�[38;5;241;43m.�[39;49m�[43msubmit�[49m�[43m,�[49m
E �[1;32m 556�[0m �[43m �[49m�[43msynchronous_executor�[49m�[38;5;241;43m.�[39;49m�[43m_max_workers�[49m�[43m,�[49m
E �[1;32m 557�[0m �[43m �[49m�[43mdsk�[49m�[43m,�[49m
E �[1;32m 558�[0m �[43m �[49m�[43mkeys�[49m�[43m,�[49m
E �[1;32m 559�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 560�[0m �[43m�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:497�[0m, in �[0;36mget_async�[0;34m(submit, num_workers, dsk, result, cache, get_id, rerun_exceptions_locally, pack_exception, raise_exception, callbacks, dumps, loads, chunksize, **kwargs)�[0m
E �[1;32m 495�[0m �[38;5;28;01mwhile�[39;00m state[�[38;5;124m"�[39m�[38;5;124mwaiting�[39m�[38;5;124m"�[39m] �[38;5;129;01mor�[39;00m state[�[38;5;124m"�[39m�[38;5;124mready�[39m�[38;5;124m"�[39m] �[38;5;129;01mor�[39;00m state[�[38;5;124m"�[39m�[38;5;124mrunning�[39m�[38;5;124m"�[39m]:
E �[1;32m 496�[0m fire_tasks(chunksize)
E �[0;32m--> 497�[0m �[38;5;28;01mfor�[39;00m key, res_info, failed �[38;5;129;01min�[39;00m �[43mqueue_get�[49m�[43m(�[49m�[43mqueue�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mresult�[49m�[43m(�[49m�[43m)�[49m:
E �[1;32m 498�[0m �[38;5;28;01mif�[39;00m failed:
E �[1;32m 499�[0m exc, tb �[38;5;241m=�[39m loads(res_info)
E
E File �[0;32m/usr/lib/python3.8/concurrent/futures/_base.py:437�[0m, in �[0;36mFuture.result�[0;34m(self, timeout)�[0m
E �[1;32m 435�[0m �[38;5;28;01mraise�[39;00m CancelledError()
E �[1;32m 436�[0m �[38;5;28;01melif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_state �[38;5;241m==�[39m FINISHED:
E �[0;32m--> 437�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m__get_result�[49m�[43m(�[49m�[43m)�[49m
E �[1;32m 439�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_condition�[38;5;241m.�[39mwait(timeout)
E �[1;32m 441�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_state �[38;5;129;01min�[39;00m [CANCELLED, CANCELLED_AND_NOTIFIED]:
E
E File �[0;32m/usr/lib/python3.8/concurrent/futures/_base.py:389�[0m, in �[0;36mFuture.__get_result�[0;34m(self)�[0m
E �[1;32m 387�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_exception:
E �[1;32m 388�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 389�[0m �[38;5;28;01mraise�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_exception
E �[1;32m 390�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 391�[0m �[38;5;66;03m# Break a reference cycle with the exception in self._exception�[39;00m
E �[1;32m 392�[0m �[38;5;28mself�[39m �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:539�[0m, in �[0;36mSynchronousExecutor.submit�[0;34m(self, fn, args, **kwargs)�[0m
E �[1;32m 537�[0m fut �[38;5;241m=�[39m Future()
E �[1;32m 538�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 539�[0m fut�[38;5;241m.�[39mset_result(�[43mfn�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m)
E �[1;32m 540�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mBaseException�[39;00m �[38;5;28;01mas�[39;00m e:
E �[1;32m 541�[0m fut�[38;5;241m.�[39mset_exception(e)
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:235�[0m, in �[0;36mbatch_execute_tasks�[0;34m(it)�[0m
E �[1;32m 231�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mbatch_execute_tasks�[39m(it):
E �[1;32m 232�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 233�[0m �[38;5;124;03m Batch computing of multiple tasks with execute_task�[39;00m
E �[1;32m 234�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 235�[0m �[38;5;28;01mreturn�[39;00m [execute_task(�[38;5;241m
�[39ma) �[38;5;28;01mfor�[39;00m a �[38;5;129;01min�[39;00m it]
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:235�[0m, in �[0;36m�[0;34m(.0)�[0m
E �[1;32m 231�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mbatch_execute_tasks�[39m(it):
E �[1;32m 232�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 233�[0m �[38;5;124;03m Batch computing of multiple tasks with execute_task�[39;00m
E �[1;32m 234�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 235�[0m �[38;5;28;01mreturn�[39;00m [�[43mexecute_task�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43ma�[49m�[43m)�[49m �[38;5;28;01mfor�[39;00m a �[38;5;129;01min�[39;00m it]
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:226�[0m, in �[0;36mexecute_task�[0;34m(key, task_info, dumps, loads, get_id, pack_exception)�[0m
E �[1;32m 224�[0m failed �[38;5;241m=�[39m �[38;5;28;01mFalse�[39;00m
E �[1;32m 225�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mBaseException�[39;00m �[38;5;28;01mas�[39;00m e:
E �[0;32m--> 226�[0m result �[38;5;241m=�[39m �[43mpack_exception�[49m�[43m(�[49m�[43me�[49m�[43m,�[49m�[43m �[49m�[43mdumps�[49m�[43m)�[49m
E �[1;32m 227�[0m failed �[38;5;241m=�[39m �[38;5;28;01mTrue�[39;00m
E �[1;32m 228�[0m �[38;5;28;01mreturn�[39;00m key, result, failed
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/local.py:221�[0m, in �[0;36mexecute_task�[0;34m(key, task_info, dumps, loads, get_id, pack_exception)�[0m
E �[1;32m 219�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 220�[0m task, data �[38;5;241m=�[39m loads(task_info)
E �[0;32m--> 221�[0m result �[38;5;241m=�[39m �[43m_execute_task�[49m�[43m(�[49m�[43mtask�[49m�[43m,�[49m�[43m �[49m�[43mdata�[49m�[43m)�[49m
E �[1;32m 222�[0m �[38;5;28mid�[39m �[38;5;241m=�[39m get_id()
E �[1;32m 223�[0m result �[38;5;241m=�[39m dumps((result, �[38;5;28mid�[39m))
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/core.py:119�[0m, in �[0;36m_execute_task�[0;34m(arg, cache, dsk)�[0m
E �[1;32m 115�[0m func, args �[38;5;241m=�[39m arg[�[38;5;241m0�[39m], arg[�[38;5;241m1�[39m:]
E �[1;32m 116�[0m �[38;5;66;03m# Note: Don't assign the subtask results to a variable. numpy detects�[39;00m
E �[1;32m 117�[0m �[38;5;66;03m# temporaries by their reference count and can execute certain�[39;00m
E �[1;32m 118�[0m �[38;5;66;03m# operations in-place.�[39;00m
E �[0;32m--> 119�[0m �[38;5;28;01mreturn�[39;00m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43m(�[49m�[43m_execute_task�[49m�[43m(�[49m�[43ma�[49m�[43m,�[49m�[43m �[49m�[43mcache�[49m�[43m)�[49m�[43m �[49m�[38;5;28;43;01mfor�[39;49;00m�[43m �[49m�[43ma�[49m�[43m �[49m�[38;5;129;43;01min�[39;49;00m�[43m �[49m�[43margs�[49m�[43m)�[49m�[43m)�[49m
E �[1;32m 120�[0m �[38;5;28;01melif�[39;00m �[38;5;129;01mnot�[39;00m ishashable(arg):
E �[1;32m 121�[0m �[38;5;28;01mreturn�[39;00m arg
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/optimization.py:990�[0m, in �[0;36mSubgraphCallable.__call__�[0;34m(self, args)�[0m
E �[1;32m 988�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mlen�[39m(args) �[38;5;241m==�[39m �[38;5;28mlen�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39minkeys):
E �[1;32m 989�[0m �[38;5;28;01mraise�[39;00m �[38;5;167;01mValueError�[39;00m(�[38;5;124m"�[39m�[38;5;124mExpected �[39m�[38;5;132;01m%d�[39;00m�[38;5;124m args, got �[39m�[38;5;132;01m%d�[39;00m�[38;5;124m"�[39m �[38;5;241m%�[39m (�[38;5;28mlen�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39minkeys), �[38;5;28mlen�[39m(args)))
E �[0;32m--> 990�[0m �[38;5;28;01mreturn�[39;00m �[43mcore�[49m�[38;5;241;43m.�[39;49m�[43mget�[49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mdsk�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43moutkey�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43mdict�[39;49m�[43m(�[49m�[38;5;28;43mzip�[39;49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43minkeys�[49m�[43m,�[49m�[43m �[49m�[43margs�[49m�[43m)�[49m�[43m)�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/core.py:149�[0m, in �[0;36mget�[0;34m(dsk, out, cache)�[0m
E �[1;32m 147�[0m �[38;5;28;01mfor�[39;00m key �[38;5;129;01min�[39;00m toposort(dsk):
E �[1;32m 148�[0m task �[38;5;241m=�[39m dsk[key]
E �[0;32m--> 149�[0m result �[38;5;241m=�[39m �[43m_execute_task�[49m�[43m(�[49m�[43mtask�[49m�[43m,�[49m�[43m �[49m�[43mcache�[49m�[43m)�[49m
E �[1;32m 150�[0m cache[key] �[38;5;241m=�[39m result
E �[1;32m 151�[0m result �[38;5;241m=�[39m _execute_task(out, cache)
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/core.py:119�[0m, in �[0;36m_execute_task�[0;34m(arg, cache, dsk)�[0m
E �[1;32m 115�[0m func, args �[38;5;241m=�[39m arg[�[38;5;241m0�[39m], arg[�[38;5;241m1�[39m:]
E �[1;32m 116�[0m �[38;5;66;03m# Note: Don't assign the subtask results to a variable. numpy detects�[39;00m
E �[1;32m 117�[0m �[38;5;66;03m# temporaries by their reference count and can execute certain�[39;00m
E �[1;32m 118�[0m �[38;5;66;03m# operations in-place.�[39;00m
E �[0;32m--> 119�[0m �[38;5;28;01mreturn�[39;00m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43m(�[49m�[43m_execute_task�[49m�[43m(�[49m�[43ma�[49m�[43m,�[49m�[43m �[49m�[43mcache�[49m�[43m)�[49m�[43m �[49m�[38;5;28;43;01mfor�[39;49;00m�[43m �[49m�[43ma�[49m�[43m �[49m�[38;5;129;43;01min�[39;49;00m�[43m �[49m�[43margs�[49m�[43m)�[49m�[43m)�[49m
E �[1;32m 120�[0m �[38;5;28;01melif�[39;00m �[38;5;129;01mnot�[39;00m ishashable(arg):
E �[1;32m 121�[0m �[38;5;28;01mreturn�[39;00m arg
E
E File �[0;32m~/.local/lib/python3.8/site-packages/dask/utils.py:39�[0m, in �[0;36mapply�[0;34m(func, args, kwargs)�[0m
E �[1;32m 37�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mapply�[39m(func, args, kwargs�[38;5;241m=�[39m�[38;5;28;01mNone�[39;00m):
E �[1;32m 38�[0m �[38;5;28;01mif�[39;00m kwargs:
E �[0;32m---> 39�[0m �[38;5;28;01mreturn�[39;00m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 40�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 41�[0m �[38;5;28;01mreturn�[39;00m func(�[38;5;241m
�[39margs)
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:69�[0m, in �[0;36mLocalExecutor.transform�[0;34m(self, transformable, graph, output_dtypes, additional_columns, capture_dtypes)�[0m
E �[1;32m 66�[0m output_data �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 68�[0m �[38;5;28;01mfor�[39;00m node �[38;5;129;01min�[39;00m nodes:
E �[0;32m---> 69�[0m input_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_build_input_data�[49m�[43m(�[49m�[43mnode�[49m�[43m,�[49m�[43m �[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 71�[0m �[38;5;28;01mif�[39;00m node�[38;5;241m.�[39mop:
E �[1;32m 72�[0m transformed_data �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_transform_data(
E �[1;32m 73�[0m node, input_data, capture_dtypes�[38;5;241m=�[39mcapture_dtypes
E �[1;32m 74�[0m )
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:116�[0m, in �[0;36mLocalExecutor._build_input_data�[0;34m(self, node, transformable, capture_dtypes)�[0m
E �[1;32m 114�[0m �[38;5;28;01mfor�[39;00m parent �[38;5;129;01min�[39;00m node�[38;5;241m.�[39mparents_with_dependencies:
E �[1;32m 115�[0m parent_output_cols �[38;5;241m=�[39m _get_unique(parent�[38;5;241m.�[39moutput_schema�[38;5;241m.�[39mcolumn_names)
E �[0;32m--> 116�[0m parent_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtransform�[49m�[43m(�[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43m[�[49m�[43mparent�[49m�[43m]�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 117�[0m �[38;5;28;01mif�[39;00m input_data �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m �[38;5;129;01mor�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mlen�[39m(input_data):
E �[1;32m 118�[0m input_data �[38;5;241m=�[39m parent_data[parent_output_cols]
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:69�[0m, in �[0;36mLocalExecutor.transform�[0;34m(self, transformable, graph, output_dtypes, additional_columns, capture_dtypes)�[0m
E �[1;32m 66�[0m output_data �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 68�[0m �[38;5;28;01mfor�[39;00m node �[38;5;129;01min�[39;00m nodes:
E �[0;32m---> 69�[0m input_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_build_input_data�[49m�[43m(�[49m�[43mnode�[49m�[43m,�[49m�[43m �[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 71�[0m �[38;5;28;01mif�[39;00m node�[38;5;241m.�[39mop:
E �[1;32m 72�[0m transformed_data �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_transform_data(
E �[1;32m 73�[0m node, input_data, capture_dtypes�[38;5;241m=�[39mcapture_dtypes
E �[1;32m 74�[0m )
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:116�[0m, in �[0;36mLocalExecutor._build_input_data�[0;34m(self, node, transformable, capture_dtypes)�[0m
E �[1;32m 114�[0m �[38;5;28;01mfor�[39;00m parent �[38;5;129;01min�[39;00m node�[38;5;241m.�[39mparents_with_dependencies:
E �[1;32m 115�[0m parent_output_cols �[38;5;241m=�[39m _get_unique(parent�[38;5;241m.�[39moutput_schema�[38;5;241m.�[39mcolumn_names)
E �[0;32m--> 116�[0m parent_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtransform�[49m�[43m(�[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43m[�[49m�[43mparent�[49m�[43m]�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 117�[0m �[38;5;28;01mif�[39;00m input_data �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m �[38;5;129;01mor�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mlen�[39m(input_data):
E �[1;32m 118�[0m input_data �[38;5;241m=�[39m parent_data[parent_output_cols]
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:69�[0m, in �[0;36mLocalExecutor.transform�[0;34m(self, transformable, graph, output_dtypes, additional_columns, capture_dtypes)�[0m
E �[1;32m 66�[0m output_data �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 68�[0m �[38;5;28;01mfor�[39;00m node �[38;5;129;01min�[39;00m nodes:
E �[0;32m---> 69�[0m input_data �[38;5;241m=�[39m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_build_input_data�[49m�[43m(�[49m�[43mnode�[49m�[43m,�[49m�[43m �[49m�[43mtransformable�[49m�[43m,�[49m�[43m �[49m�[43mcapture_dtypes�[49m�[38;5;241;43m=�[39;49m�[43mcapture_dtypes�[49m�[43m)�[49m
E �[1;32m 71�[0m �[38;5;28;01mif�[39;00m node�[38;5;241m.�[39mop:
E �[1;32m 72�[0m transformed_data �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_transform_data(
E �[1;32m 73�[0m node, input_data, capture_dtypes�[38;5;241m=�[39mcapture_dtypes
E �[1;32m 74�[0m )
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:122�[0m, in �[0;36mLocalExecutor._build_input_data�[0;34m(self, node, transformable, capture_dtypes)�[0m
E �[1;32m 120�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 121�[0m new_columns �[38;5;241m=�[39m �[38;5;28mset�[39m(parent_output_cols) �[38;5;241m-�[39m seen_columns
E �[0;32m--> 122�[0m input_data �[38;5;241m=�[39m �[43mconcat_columns�[49m�[43m(�[49m�[43m[�[49m�[43minput_data�[49m�[43m,�[49m�[43m �[49m�[43mparent_data�[49m�[43m[�[49m�[38;5;28;43mlist�[39;49m�[43m(�[49m�[43mnew_columns�[49m�[43m)�[49m�[43m]�[49m�[43m]�[49m�[43m)�[49m
E �[1;32m 123�[0m seen_columns�[38;5;241m.�[39mupdate(new_columns)
E �[1;32m 125�[0m �[38;5;66;03m# Check for additional input columns that aren't generated by parents�[39;00m
E �[1;32m 126�[0m �[38;5;66;03m# and fetch them from the root DataFrame or DictArray�[39;00m
E
E File �[0;32m~/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/core/dispatch.py:353�[0m, in �[0;36mconcat_columns�[0;34m(args)�[0m
E �[1;32m 351�[0m �[38;5;28;01mif�[39;00m �[38;5;28mlen�[39m(args) �[38;5;241m==�[39m �[38;5;241m1�[39m:
E �[1;32m 352�[0m �[38;5;28;01mreturn�[39;00m args[�[38;5;241m0�[39m]
E �[0;32m--> 353�[0m �[38;5;28;01melif�[39;00m �[38;5;28;43misinstance�[39;49m�[43m(�[49m�[43margs�[49m�[43m[�[49m�[38;5;241;43m0�[39;49m�[43m]�[49m�[43m,�[49m�[43m �[49m�[43mDataFrameLike�[49m�[43m)�[49m:
E �[1;32m 354�[0m _lib �[38;5;241m=�[39m cudf �[38;5;28;01mif�[39;00m HAS_GPU �[38;5;129;01mand�[39;00m �[38;5;28misinstance�[39m(args[�[38;5;241m0�[39m], cudf�[38;5;241m.�[39mDataFrame) �[38;5;28;01melse�[39;00m pd
E �[1;32m 355�[0m �[38;5;28;01mreturn�[39;00m _lib�[38;5;241m.�[39mconcat(
E �[1;32m 356�[0m [a�[38;5;241m.�[39mreset_index(drop�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m) �[38;5;28;01mfor�[39;00m a �[38;5;129;01min�[39;00m args],
E �[1;32m 357�[0m axis�[38;5;241m=�[39m�[38;5;241m1�[39m,
E �[1;32m 358�[0m )
E
E File �[0;32m/usr/lib/python3.8/typing.py:1017�[0m, in �[0;36m_ProtocolMeta.__instancecheck__�[0;34m(cls, instance)�[0m
E �[1;32m 1015�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mTrue�[39;00m
E �[1;32m 1016�[0m �[38;5;28;01mif�[39;00m �[38;5;28mcls�[39m�[38;5;241m.�[39m_is_protocol:
E �[0;32m-> 1017�[0m �[38;5;28;01mif�[39;00m �[38;5;28;43mall�[39;49m�[43m(�[49m�[38;5;28;43mhasattr�[39;49m�[43m(�[49m�[43minstance�[49m�[43m,�[49m�[43m �[49m�[43mattr�[49m�[43m)�[49m�[43m �[49m�[38;5;129;43;01mand�[39;49;00m
E �[1;32m 1018�[0m �[43m �[49m�[38;5;66;43;03m# All methods can be blocked by setting them to None.�[39;49;00m
E �[1;32m 1019�[0m �[43m �[49m�[43m(�[49m�[38;5;129;43;01mnot�[39;49;00m�[43m �[49m�[43mcallable�[49m�[43m(�[49m�[38;5;28;43mgetattr�[39;49m�[43m(�[49m�[38;5;28;43mcls�[39;49m�[43m,�[49m�[43m �[49m�[43mattr�[49m�[43m,�[49m�[43m �[49m�[38;5;28;43;01mNone�[39;49;00m�[43m)�[49m�[43m)�[49m�[43m �[49m�[38;5;129;43;01mor�[39;49;00m
E �[1;32m 1020�[0m �[43m �[49m�[38;5;28;43mgetattr�[39;49m�[43m(�[49m�[43minstance�[49m�[43m,�[49m�[43m �[49m�[43mattr�[49m�[43m)�[49m�[43m �[49m�[38;5;129;43;01mis�[39;49;00m�[43m �[49m�[38;5;129;43;01mnot�[39;49;00m�[43m �[49m�[38;5;28;43;01mNone�[39;49;00m�[43m)�[49m
E �[1;32m 1021�[0m �[43m �[49m�[38;5;28;43;01mfor�[39;49;00m�[43m �[49m�[43mattr�[49m�[43m �[49m�[38;5;129;43;01min�[39;49;00m�[43m �[49m�[43m_get_protocol_attrs�[49m�[43m(�[49m�[38;5;28;43mcls�[39;49m�[43m)�[49m�[43m)�[49m:
E �[1;32m 1022�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mTrue�[39;00m
E �[1;32m 1023�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28msuper�[39m()�[38;5;241m.�[39m�[38;5;21m__instancecheck__�[39m(instance)
E
E File �[0;32m/usr/lib/python3.8/typing.py:1017�[0m, in �[0;36m�[0;34m(.0)�[0m
E �[1;32m 1015�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mTrue�[39;00m
E �[1;32m 1016�[0m �[38;5;28;01mif�[39;00m �[38;5;28mcls�[39m�[38;5;241m.�[39m_is_protocol:
E �[0;32m-> 1017�[0m �[38;5;28;01mif�[39;00m �[38;5;28mall�[39m(�[38;5;28;43mhasattr�[39;49m�[43m(�[49m�[43minstance�[49m�[43m,�[49m�[43m �[49m�[43mattr�[49m�[43m)�[49m �[38;5;129;01mand�[39;00m
E �[1;32m 1018�[0m �[38;5;66;03m# All methods can be blocked by setting them to None.�[39;00m
E �[1;32m 1019�[0m (�[38;5;129;01mnot�[39;00m callable(�[38;5;28mgetattr�[39m(�[38;5;28mcls�[39m, attr, �[38;5;28;01mNone�[39;00m)) �[38;5;129;01mor�[39;00m
E �[1;32m 1020�[0m �[38;5;28mgetattr�[39m(instance, attr) �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m)
E �[1;32m 1021�[0m �[38;5;28;01mfor�[39;00m attr �[38;5;129;01min�[39;00m _get_protocol_attrs(�[38;5;28mcls�[39m)):
E �[1;32m 1022�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mTrue�[39;00m
E �[1;32m 1023�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28msuper�[39m()�[38;5;241m.�[39m�[38;5;21m__instancecheck__�[39m(instance)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/core/frame.py:455�[0m, in �[0;36mFrame.values�[0;34m(self)�[0m
E �[1;32m 442�[0m �[38;5;129m@property�[39m
E �[1;32m 443�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mvalues�[39m(�[38;5;28mself�[39m):
E �[1;32m 444�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 445�[0m �[38;5;124;03m Return a CuPy representation of the DataFrame.�[39;00m
E �[1;32m 446�[0m
E �[0;32m (...)�[0m
E �[1;32m 453�[0m �[38;5;124;03m The values of the DataFrame.�[39;00m
E �[1;32m 454�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 455�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mto_cupy�[49m�[43m(�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/core/frame.py:555�[0m, in �[0;36mFrame.to_cupy�[0;34m(self, dtype, copy, na_value)�[0m
E �[1;32m 529�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 530�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mto_cupy�[39m(
E �[1;32m 531�[0m �[38;5;28mself�[39m,
E �[0;32m (...)�[0m
E �[1;32m 534�[0m na_value�[38;5;241m=�[39m�[38;5;28;01mNone�[39;00m,
E �[1;32m 535�[0m ) �[38;5;241m-�[39m�[38;5;241m>�[39m cupy�[38;5;241m.�[39mndarray:
E �[1;32m 536�[0m �[38;5;124;03m"""Convert the Frame to a CuPy array.�[39;00m
E �[1;32m 537�[0m
E �[1;32m 538�[0m �[38;5;124;03m Parameters�[39;00m
E �[0;32m (...)�[0m
E �[1;32m 553�[0m �[38;5;124;03m cupy.ndarray�[39;00m
E �[1;32m 554�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 555�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_to_array�[49m�[43m(�[49m
E �[1;32m 556�[0m �[43m �[49m�[43m(�[49m�[38;5;28;43;01mlambda�[39;49;00m�[43m �[49m�[43mcol�[49m�[43m:�[49m�[43m �[49m�[43mcol�[49m�[38;5;241;43m.�[39;49m�[43mvalues�[49m�[38;5;241;43m.�[39;49m�[43mcopy�[49m�[43m(�[49m�[43m)�[49m�[43m)�[49m
E �[1;32m 557�[0m �[43m �[49m�[38;5;28;43;01mif�[39;49;00m�[43m �[49m�[43mcopy�[49m
E �[1;32m 558�[0m �[43m �[49m�[38;5;28;43;01melse�[39;49;00m�[43m �[49m�[43m(�[49m�[38;5;28;43;01mlambda�[39;49;00m�[43m �[49m�[43mcol�[49m�[43m:�[49m�[43m �[49m�[43mcol�[49m�[38;5;241;43m.�[39;49m�[43mvalues�[49m�[43m)�[49m�[43m,�[49m
E �[1;32m 559�[0m �[43m �[49m�[43mcupy�[49m�[38;5;241;43m.�[39;49m�[43mempty�[49m�[43m,�[49m
E �[1;32m 560�[0m �[43m �[49m�[43mdtype�[49m�[43m,�[49m
E �[1;32m 561�[0m �[43m �[49m�[43mna_value�[49m�[43m,�[49m
E �[1;32m 562�[0m �[43m �[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/core/frame.py:509�[0m, in �[0;36mFrame._to_array�[0;34m(self, get_column_values, make_empty_matrix, dtype, na_value)�[0m
E �[1;32m 504�[0m �[38;5;28;01mreturn�[39;00m make_empty_matrix(
E �[1;32m 505�[0m shape�[38;5;241m=�[39m(�[38;5;241m0�[39m, �[38;5;241m0�[39m), dtype�[38;5;241m=�[39mnp�[38;5;241m.�[39mdtype(�[38;5;124m"�[39m�[38;5;124mfloat64�[39m�[38;5;124m"�[39m), order�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124mF�[39m�[38;5;124m"�[39m
E �[1;32m 506�[0m )
E �[1;32m 508�[0m �[38;5;28;01mif�[39;00m dtype �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m:
E �[0;32m--> 509�[0m dtype �[38;5;241m=�[39m �[43mfind_common_type�[49m�[43m(�[49m
E �[1;32m 510�[0m �[43m �[49m�[43m[�[49m�[43mcol�[49m�[38;5;241;43m.�[39;49m�[43mdtype�[49m�[43m �[49m�[38;5;28;43;01mfor�[39;49;00m�[43m �[49m�[43mcol�[49m�[43m �[49m�[38;5;129;43;01min�[39;49;00m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_data�[49m�[38;5;241;43m.�[39;49m�[43mvalues�[49m�[43m(�[49m�[43m)�[49m�[43m]�[49m
E �[1;32m 511�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 513�[0m matrix �[38;5;241m=�[39m make_empty_matrix(
E �[1;32m 514�[0m shape�[38;5;241m=�[39m(�[38;5;28mlen�[39m(�[38;5;28mself�[39m), ncol), dtype�[38;5;241m=�[39mdtype, order�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124mF�[39m�[38;5;124m"�[39m
E �[1;32m 515�[0m )
E �[1;32m 516�[0m �[38;5;28;01mfor�[39;00m i, col �[38;5;129;01min�[39;00m �[38;5;28menumerate�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39m_data�[38;5;241m.�[39mvalues()):
E �[1;32m 517�[0m �[38;5;66;03m# TODO: col.values may fail if there is nullable data or an�[39;00m
E �[1;32m 518�[0m �[38;5;66;03m# unsupported dtype. We may want to catch and provide a more�[39;00m
E �[1;32m 519�[0m �[38;5;66;03m# suitable error.�[39;00m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/utils/dtypes.py:575�[0m, in �[0;36mfind_common_type�[0;34m(dtypes)�[0m
E �[1;32m 572�[0m dtypes �[38;5;241m=�[39m dtypes �[38;5;241m-�[39m dt_dtypes
E �[1;32m 573�[0m dtypes�[38;5;241m.�[39madd(np�[38;5;241m.�[39mresult_type(�[38;5;241m
�[39mdt_dtypes))
E �[0;32m--> 575�[0m td_dtypes �[38;5;241m=�[39m �[38;5;28;43mset�[39;49m�[43m(�[49m
E �[1;32m 576�[0m �[43m �[49m�[38;5;28;43mfilter�[39;49m�[43m(�[49m�[38;5;28;43;01mlambda�[39;49;00m�[43m �[49m�[43mt�[49m�[43m:�[49m�[43m �[49m�[43mpd�[49m�[38;5;241;43m.�[39;49m�[43mapi�[49m�[38;5;241;43m.�[39;49m�[43mtypes�[49m�[38;5;241;43m.�[39;49m�[43mis_timedelta64_dtype�[49m�[43m(�[49m�[43mt�[49m�[43m)�[49m�[43m,�[49m�[43m �[49m�[43mdtypes�[49m�[43m)�[49m
E �[1;32m 577�[0m �[43m�[49m�[43m)�[49m
E �[1;32m 578�[0m �[38;5;28;01mif�[39;00m �[38;5;28mlen�[39m(td_dtypes) �[38;5;241m>�[39m �[38;5;241m0�[39m:
E �[1;32m 579�[0m dtypes �[38;5;241m=�[39m dtypes �[38;5;241m-�[39m td_dtypes
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/utils/dtypes.py:576�[0m, in �[0;36mfind_common_type..�[0;34m(t)�[0m
E �[1;32m 572�[0m dtypes �[38;5;241m=�[39m dtypes �[38;5;241m-�[39m dt_dtypes
E �[1;32m 573�[0m dtypes�[38;5;241m.�[39madd(np�[38;5;241m.�[39mresult_type(�[38;5;241m�[39mdt_dtypes))
E �[1;32m 575�[0m td_dtypes �[38;5;241m=�[39m �[38;5;28mset�[39m(
E �[0;32m--> 576�[0m �[38;5;28mfilter�[39m(�[38;5;28;01mlambda�[39;00m t: �[43mpd�[49m�[38;5;241;43m.�[39;49m�[43mapi�[49m�[38;5;241;43m.�[39;49m�[43mtypes�[49m�[38;5;241;43m.�[39;49m�[43mis_timedelta64_dtype�[49m�[43m(�[49m�[43mt�[49m�[43m)�[49m, dtypes)
E �[1;32m 577�[0m )
E �[1;32m 578�[0m �[38;5;28;01mif�[39;00m �[38;5;28mlen�[39m(td_dtypes) �[38;5;241m>�[39m �[38;5;241m0�[39m:
E �[1;32m 579�[0m dtypes �[38;5;241m=�[39m dtypes �[38;5;241m-�[39m td_dtypes
E
E File �[0;32m~/.local/lib/python3.8/site-packages/pandas/core/dtypes/common.py:419�[0m, in �[0;36mis_timedelta64_dtype�[0;34m(arr_or_dtype)�[0m
E �[1;32m 415�[0m �[38;5;28;01mif�[39;00m �[38;5;28misinstance�[39m(arr_or_dtype, np�[38;5;241m.�[39mdtype):
E �[1;32m 416�[0m �[38;5;66;03m# GH#33400 fastpath for dtype object�[39;00m
E �[1;32m 417�[0m �[38;5;28;01mreturn�[39;00m arr_or_dtype�[38;5;241m.�[39mkind �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mm�[39m�[38;5;124m"�[39m
E �[0;32m--> 419�[0m �[38;5;28;01mreturn�[39;00m �[43m_is_dtype_type�[49m�[43m(�[49m�[43marr_or_dtype�[49m�[43m,�[49m�[43m �[49m�[43mclasses�[49m�[43m(�[49m�[43mnp�[49m�[38;5;241;43m.�[39;49m�[43mtimedelta64�[49m�[43m)�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/pandas/core/dtypes/common.py:1619�[0m, in �[0;36m_is_dtype_type�[0;34m(arr_or_dtype, condition)�[0m
E �[1;32m 1615�[0m �[38;5;28;01mreturn�[39;00m condition(�[38;5;28mtype�[39m(�[38;5;28;01mNone�[39;00m))
E �[1;32m 1617�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mFalse�[39;00m
E �[0;32m-> 1619�[0m �[38;5;28;01mreturn�[39;00m �[43mcondition�[49m�[43m(�[49m�[43mtipo�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/pandas/core/dtypes/common.py:146�[0m, in �[0;36mclasses..�[0;34m(tipo)�[0m
E �[1;32m 144�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mclasses�[39m(�[38;5;241m
�[39mklasses) �[38;5;241m-�[39m�[38;5;241m>�[39m Callable:
E �[1;32m 145�[0m �[38;5;124;03m"""evaluate if the tipo is a subclass of the klasses"""�[39;00m
E �[0;32m--> 146�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28;01mlambda�[39;00m tipo: �[38;5;28;43missubclass�[39;49m�[43m(�[49m�[43mtipo�[49m�[43m,�[49m�[43m �[49m�[43mklasses�[49m�[43m)�[49m
E
E �[0;31mTypeError�[0m: issubclass() arg 1 must be a class
E TypeError: issubclass() arg 1 must be a class

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-09 17:15:14.071112: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-09 17:15:17.431681: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-09 17:15:17.431803: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-09 17:15:17.433409: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-09 17:15:17.433572: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-09 17:15:17.434707: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-09 17:15:17.434826: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-09 17:15:17.435927: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-09 17:15:17.436066: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 15 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 9 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:968: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_file81y_0rr.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
_.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 107 80 25%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 50 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 753 102 86%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11552 2380 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 862 passed, 13 skipped, 1433 warnings in 1669.84s (0:27:49) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins5819987376212459844.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit c0be6da89438367ffeee100d459b8aa94e446f24, no merge conflicts.
Running as SYSTEM
Setting status of c0be6da89438367ffeee100d459b8aa94e446f24 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1831/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse c0be6da89438367ffeee100d459b8aa94e446f24^{commit} # timeout=10
Checking out Revision c0be6da89438367ffeee100d459b8aa94e446f24 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f c0be6da89438367ffeee100d459b8aa94e446f24 # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk ba38df0f93157f1a9d90e4a9e5264075b755e089 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins3874824065527651633.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/3/merlin-models-0.9.0+47.gc0be6da8.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.8,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.1,boto3==1.24.75,botocore==1.29.8,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.5.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.2,merlin-models==0.9.0+47.gc0be6da8,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.990,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,nvtabular @ git+https://github.com/NVIDIA-Merlin/NVTabular.git@ba4c14159a8e858c8998d4158a4376e65a8fa266,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='2819078963'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-pdgknkcq
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-pdgknkcq
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit eb606d54fa2ddcbb7e4d0e6501ab2eb418c7fba9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (7.0.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.5.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.2.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (21.3)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (0.55.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (4.64.1)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (0.4.3)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.12.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.8.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.4)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+11.geb606d5) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.8.0+11.geb606d5-py3-none-any.whl size=118619 sha256=dfb1c39a1deb2c118c9c3d1ddafa9e24dd34e61444207640534e8a37ec56d66d
  Stored in directory: /tmp/pip-ephem-wheel-cache-ajhe7lcn/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.8.0+11.geb606d5
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-cqe6lp3t
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-cqe6lp3t
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+11.geb606d5)
Requirement already satisfied: merlin-dataloader>=0.0.2 in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Building wheels for collected packages: nvtabular
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+4.gba4c1415-cp38-cp38-linux_x86_64.whl size=257596 sha256=7065e0e65fa11b7225c51ba3a2279743c89f8ec75e71784fb062b825d54a4b67
  Stored in directory: /tmp/pip-ephem-wheel-cache-3tzgnblu/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
Successfully built nvtabular
Installing collected packages: nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed nvtabular-1.6.0+4.gba4c1415
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 876 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s......................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ..................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 81%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7fbbe0483a90>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7fbbe0483a90>
cell = {'cell_type': 'code', 'execution_count': 16, 'id': '5ba81642', 'metadata': {'execution': {'iopub.status.busy': '2022-1....sort_values('date_first').reset_index(drop=True)\ndf.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))'}
cell_index = 31
exec_reply = {'buffers': [], 'content': {'ename': 'RuntimeError', 'engine_info': {'engine_id': -1, 'engine_uuid': '62e42477-9961-48...e, 'engine': '62e42477-9961-48bb-b82f-ddfb4df1a49b', 'started': '2022-11-14T14:09:20.106132Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E df = get_lib().read_parquet(
E glob.glob(
E os.path.join(DATA_FOLDER, "train/.parquet")
E )
E )
E df = df.sort_values('date_first').reset_index(drop=True)
E df.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mRuntimeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [16], line 1�[0m
E �[0;32m----> 1�[0m df �[38;5;241m=�[39m �[43mget_lib�[49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 2�[0m �[43m �[49m�[43mglob�[49m�[38;5;241;43m.�[39;49m�[43mglob�[49m�[43m(�[49m
E �[1;32m 3�[0m �[43m �[49m�[43mos�[49m�[38;5;241;43m.�[39;49m�[43mpath�[49m�[38;5;241;43m.�[39;49m�[43mjoin�[49m�[43m(�[49m�[43mDATA_FOLDER�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mtrain/
.parquet�[39;49m�[38;5;124;43m"�[39;49m�[43m)�[49m
E �[1;32m 4�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 5�[0m �[43m)�[49m
E �[1;32m 6�[0m df �[38;5;241m=�[39m df�[38;5;241m.�[39msort_values(�[38;5;124m'�[39m�[38;5;124mdate_first�[39m�[38;5;124m'�[39m)�[38;5;241m.�[39mreset_index(drop�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[1;32m 7�[0m df�[38;5;241m.�[39mto_parquet(os�[38;5;241m.�[39mpath�[38;5;241m.�[39mjoin(DATA_FOLDER, �[38;5;124m"�[39m�[38;5;124mtrain_sorted.parquet�[39m�[38;5;124m"�[39m))
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:470�[0m, in �[0;36mread_parquet�[0;34m(filepath_or_buffer, engine, columns, filters, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, use_python_file_object, categorical_partitions, open_file_options, args, **kwargs)�[0m
E �[1;32m 463�[0m �[38;5;28;01mif�[39;00m filters �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E �[1;32m 464�[0m warnings�[38;5;241m.�[39mwarn(
E �[1;32m 465�[0m �[38;5;124m"�[39m�[38;5;124mParquet row-group filtering is only supported with �[39m�[38;5;124m"�[39m
E �[1;32m 466�[0m �[38;5;124m"�[39m�[38;5;124m'�[39m�[38;5;124mengine=cudf�[39m�[38;5;124m'�[39m�[38;5;124m. Use pandas or pyarrow API directly �[39m�[38;5;124m"�[39m
E �[1;32m 467�[0m �[38;5;124m"�[39m�[38;5;124mfor full CPU-based filtering functionality.�[39m�[38;5;124m"�[39m
E �[1;32m 468�[0m )
E �[0;32m--> 470�[0m �[38;5;28;01mreturn�[39;00m �[43m_parquet_to_frame�[49m�[43m(�[49m
E �[1;32m 471�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 472�[0m �[43m �[49m�[43mengine�[49m�[43m,�[49m
E �[1;32m 473�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 474�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 475�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 476�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 477�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 478�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 479�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 480�[0m �[43m �[49m�[43mpartition_keys�[49m�[38;5;241;43m=�[39;49m�[43mpartition_keys�[49m�[43m,�[49m
E �[1;32m 481�[0m �[43m �[49m�[43mpartition_categories�[49m�[38;5;241;43m=�[39;49m�[43mpartition_categories�[49m�[43m,�[49m
E �[1;32m 482�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 483�[0m �[43m�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:499�[0m, in �[0;36m_parquet_to_frame�[0;34m(paths_or_buffers, row_groups, partition_keys, partition_categories, args, **kwargs)�[0m
E �[1;32m 486�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 487�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_parquet_to_frame�[39m(
E �[1;32m 488�[0m paths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 496�[0m �[38;5;66;03m# If this is not a partitioned read, only need�[39;00m
E �[1;32m 497�[0m �[38;5;66;03m# one call to _read_parquet�[39;00m
E �[1;32m 498�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m partition_keys:
E �[0;32m--> 499�[0m �[38;5;28;01mreturn�[39;00m �[43m_read_parquet�[49m�[43m(�[49m
E �[1;32m 500�[0m �[43m �[49m�[43mpaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 501�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 502�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 503�[0m �[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 504�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 506�[0m �[38;5;66;03m# For partitioned data, we need a distinct read for each�[39;00m
E �[1;32m 507�[0m �[38;5;66;03m# unique set of partition keys. Therefore, we start by�[39;00m
E �[1;32m 508�[0m �[38;5;66;03m# aggregating all paths with matching keys using a dict�[39;00m
E �[1;32m 509�[0m plan �[38;5;241m=�[39m {}
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:576�[0m, in �[0;36m_read_parquet�[0;34m(filepaths_or_buffers, engine, columns, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, args, **kwargs)�[0m
E �[1;32m 560�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 561�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_read_parquet�[39m(
E �[1;32m 562�[0m filepaths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 573�[0m �[38;5;66;03m# Simple helper function to dispatch between�[39;00m
E �[1;32m 574�[0m �[38;5;66;03m# cudf and pyarrow to read parquet data�[39;00m
E �[1;32m 575�[0m �[38;5;28;01mif�[39;00m engine �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mcudf�[39m�[38;5;124m"�[39m:
E �[0;32m--> 576�[0m �[38;5;28;01mreturn�[39;00m �[43mlibparquet�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 577�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 578�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 579�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 580�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 581�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 582�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 583�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 584�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 585�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 586�[0m �[38;5;28;01mreturn�[39;00m cudf�[38;5;241m.�[39mDataFrame�[38;5;241m.�[39mfrom_arrow(
E �[1;32m 587�[0m pq�[38;5;241m.�[39mParquetDataset(filepaths_or_buffers)�[38;5;241m.�[39mread_pandas(
E �[1;32m 588�[0m columns�[38;5;241m=�[39mcolumns, �[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs
E �[1;32m 589�[0m )
E �[1;32m 590�[0m )
E
E File �[0;32mcudf/_lib/parquet.pyx:113�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E File �[0;32mcudf/_lib/parquet.pyx:173�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E �[0;31mRuntimeError�[0m: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas
E RuntimeError: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-14 14:09:10.688433: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-14 14:09:14.113666: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-14 14:09:14.113778: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-14 14:09:14.114602: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-14 14:09:14.114655: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-14 14:09:14.115295: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-14 14:09:14.115345: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-14 14:09:14.115974: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-14 14:09:14.116031: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 15 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 9 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:968: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filevx25w7_f.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 50 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 753 102 86%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11572 2400 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 862 passed, 13 skipped, 1433 warnings in 1690.43s (0:28:10) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins8870580853522479077.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit e4f14f0d9a9893f67aa15b96b4207f095612cb4c, no merge conflicts.
Running as SYSTEM
Setting status of e4f14f0d9a9893f67aa15b96b4207f095612cb4c to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1832/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse e4f14f0d9a9893f67aa15b96b4207f095612cb4c^{commit} # timeout=10
Checking out Revision e4f14f0d9a9893f67aa15b96b4207f095612cb4c (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f e4f14f0d9a9893f67aa15b96b4207f095612cb4c # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk c0be6da89438367ffeee100d459b8aa94e446f24 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins7773881631705626350.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/3/merlin-models-0.9.0+49.ge4f14f0d.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.8,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.1,boto3==1.24.75,botocore==1.29.8,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.5.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.2,merlin-models==0.9.0+49.ge4f14f0d,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.990,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,nvtabular @ git+https://github.com/NVIDIA-Merlin/NVTabular.git@ba4c14159a8e858c8998d4158a4376e65a8fa266,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='4027849918'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-4o1lzc8k
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-4o1lzc8k
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit eb606d54fa2ddcbb7e4d0e6501ab2eb418c7fba9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (1.3.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (7.0.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.2.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (0.55.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.5.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.12.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.4.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.8.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+11.geb606d5) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2.8.2)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.8.0+11.geb606d5-py3-none-any.whl size=118619 sha256=65e34117cf6c1967b4654f38772c31fbcbea4c1ad82342c40007dcfa7fb92991
  Stored in directory: /tmp/pip-ephem-wheel-cache-fesb9k4a/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.8.0+11.geb606d5
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-w_z541qo
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-w_z541qo
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+11.geb606d5)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: merlin-dataloader>=0.0.2 in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)
Building wheels for collected packages: nvtabular
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+4.gba4c1415-cp38-cp38-linux_x86_64.whl size=257596 sha256=3979d720e6640a3687dea1e102a6a2feff3188077db0c035bb5ceb65f3709e9d
  Stored in directory: /tmp/pip-ephem-wheel-cache-5zh33fax/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
Successfully built nvtabular
Installing collected packages: nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed nvtabular-1.6.0+4.gba4c1415
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 877 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 29%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s......................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 49%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 81%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f2de4073d00>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f2de4073d00>
cell = {'cell_type': 'code', 'execution_count': 16, 'id': '5ba81642', 'metadata': {'execution': {'iopub.status.busy': '2022-1....sort_values('date_first').reset_index(drop=True)\ndf.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))'}
cell_index = 31
exec_reply = {'buffers': [], 'content': {'ename': 'RuntimeError', 'engine_info': {'engine_id': -1, 'engine_uuid': '9a622a86-10e8-49...e, 'engine': '9a622a86-10e8-49d2-b9f6-2c3a3652359e', 'started': '2022-11-14T14:40:41.409906Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E df = get_lib().read_parquet(
E glob.glob(
E os.path.join(DATA_FOLDER, "train/.parquet")
E )
E )
E df = df.sort_values('date_first').reset_index(drop=True)
E df.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mRuntimeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [16], line 1�[0m
E �[0;32m----> 1�[0m df �[38;5;241m=�[39m �[43mget_lib�[49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 2�[0m �[43m �[49m�[43mglob�[49m�[38;5;241;43m.�[39;49m�[43mglob�[49m�[43m(�[49m
E �[1;32m 3�[0m �[43m �[49m�[43mos�[49m�[38;5;241;43m.�[39;49m�[43mpath�[49m�[38;5;241;43m.�[39;49m�[43mjoin�[49m�[43m(�[49m�[43mDATA_FOLDER�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mtrain/
.parquet�[39;49m�[38;5;124;43m"�[39;49m�[43m)�[49m
E �[1;32m 4�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 5�[0m �[43m)�[49m
E �[1;32m 6�[0m df �[38;5;241m=�[39m df�[38;5;241m.�[39msort_values(�[38;5;124m'�[39m�[38;5;124mdate_first�[39m�[38;5;124m'�[39m)�[38;5;241m.�[39mreset_index(drop�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[1;32m 7�[0m df�[38;5;241m.�[39mto_parquet(os�[38;5;241m.�[39mpath�[38;5;241m.�[39mjoin(DATA_FOLDER, �[38;5;124m"�[39m�[38;5;124mtrain_sorted.parquet�[39m�[38;5;124m"�[39m))
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:470�[0m, in �[0;36mread_parquet�[0;34m(filepath_or_buffer, engine, columns, filters, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, use_python_file_object, categorical_partitions, open_file_options, args, **kwargs)�[0m
E �[1;32m 463�[0m �[38;5;28;01mif�[39;00m filters �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E �[1;32m 464�[0m warnings�[38;5;241m.�[39mwarn(
E �[1;32m 465�[0m �[38;5;124m"�[39m�[38;5;124mParquet row-group filtering is only supported with �[39m�[38;5;124m"�[39m
E �[1;32m 466�[0m �[38;5;124m"�[39m�[38;5;124m'�[39m�[38;5;124mengine=cudf�[39m�[38;5;124m'�[39m�[38;5;124m. Use pandas or pyarrow API directly �[39m�[38;5;124m"�[39m
E �[1;32m 467�[0m �[38;5;124m"�[39m�[38;5;124mfor full CPU-based filtering functionality.�[39m�[38;5;124m"�[39m
E �[1;32m 468�[0m )
E �[0;32m--> 470�[0m �[38;5;28;01mreturn�[39;00m �[43m_parquet_to_frame�[49m�[43m(�[49m
E �[1;32m 471�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 472�[0m �[43m �[49m�[43mengine�[49m�[43m,�[49m
E �[1;32m 473�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 474�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 475�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 476�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 477�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 478�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 479�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 480�[0m �[43m �[49m�[43mpartition_keys�[49m�[38;5;241;43m=�[39;49m�[43mpartition_keys�[49m�[43m,�[49m
E �[1;32m 481�[0m �[43m �[49m�[43mpartition_categories�[49m�[38;5;241;43m=�[39;49m�[43mpartition_categories�[49m�[43m,�[49m
E �[1;32m 482�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 483�[0m �[43m�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:499�[0m, in �[0;36m_parquet_to_frame�[0;34m(paths_or_buffers, row_groups, partition_keys, partition_categories, args, **kwargs)�[0m
E �[1;32m 486�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 487�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_parquet_to_frame�[39m(
E �[1;32m 488�[0m paths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 496�[0m �[38;5;66;03m# If this is not a partitioned read, only need�[39;00m
E �[1;32m 497�[0m �[38;5;66;03m# one call to _read_parquet�[39;00m
E �[1;32m 498�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m partition_keys:
E �[0;32m--> 499�[0m �[38;5;28;01mreturn�[39;00m �[43m_read_parquet�[49m�[43m(�[49m
E �[1;32m 500�[0m �[43m �[49m�[43mpaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 501�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 502�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 503�[0m �[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 504�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 506�[0m �[38;5;66;03m# For partitioned data, we need a distinct read for each�[39;00m
E �[1;32m 507�[0m �[38;5;66;03m# unique set of partition keys. Therefore, we start by�[39;00m
E �[1;32m 508�[0m �[38;5;66;03m# aggregating all paths with matching keys using a dict�[39;00m
E �[1;32m 509�[0m plan �[38;5;241m=�[39m {}
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:576�[0m, in �[0;36m_read_parquet�[0;34m(filepaths_or_buffers, engine, columns, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, args, **kwargs)�[0m
E �[1;32m 560�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 561�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_read_parquet�[39m(
E �[1;32m 562�[0m filepaths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 573�[0m �[38;5;66;03m# Simple helper function to dispatch between�[39;00m
E �[1;32m 574�[0m �[38;5;66;03m# cudf and pyarrow to read parquet data�[39;00m
E �[1;32m 575�[0m �[38;5;28;01mif�[39;00m engine �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mcudf�[39m�[38;5;124m"�[39m:
E �[0;32m--> 576�[0m �[38;5;28;01mreturn�[39;00m �[43mlibparquet�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 577�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 578�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 579�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 580�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 581�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 582�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 583�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 584�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 585�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 586�[0m �[38;5;28;01mreturn�[39;00m cudf�[38;5;241m.�[39mDataFrame�[38;5;241m.�[39mfrom_arrow(
E �[1;32m 587�[0m pq�[38;5;241m.�[39mParquetDataset(filepaths_or_buffers)�[38;5;241m.�[39mread_pandas(
E �[1;32m 588�[0m columns�[38;5;241m=�[39mcolumns, �[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs
E �[1;32m 589�[0m )
E �[1;32m 590�[0m )
E
E File �[0;32mcudf/_lib/parquet.pyx:113�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E File �[0;32mcudf/_lib/parquet.pyx:173�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E �[0;31mRuntimeError�[0m: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas
E RuntimeError: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-14 14:40:31.672574: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-14 14:40:35.239374: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-14 14:40:35.239485: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-14 14:40:35.240397: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-14 14:40:35.240457: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13851 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-14 14:40:35.241067: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-14 14:40:35.241119: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13851 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-14 14:40:35.241727: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-14 14:40:35.241779: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13851 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:968: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filep8r3t25b.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 50 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 756 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11575 2399 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 863 passed, 13 skipped, 1436 warnings in 1743.76s (0:29:03) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins15060169443107138385.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 4bbc2e70a325e34d2caeca720ff7a9e088dffe15, no merge conflicts.
Running as SYSTEM
Setting status of 4bbc2e70a325e34d2caeca720ff7a9e088dffe15 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1834/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 4bbc2e70a325e34d2caeca720ff7a9e088dffe15^{commit} # timeout=10
Checking out Revision 4bbc2e70a325e34d2caeca720ff7a9e088dffe15 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 4bbc2e70a325e34d2caeca720ff7a9e088dffe15 # timeout=10
Commit message: "update nb"
 > git rev-list --no-walk 2c14312ecf9c63e2e08a148b4f757de095b063bb # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins4175192373987339955.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/3/merlin-models-0.9.0+50.g4bbc2e70.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.8,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.8,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.5.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.2,merlin-models==0.9.0+50.g4bbc2e70,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,nvtabular @ git+https://github.com/NVIDIA-Merlin/NVTabular.git@ba4c14159a8e858c8998d4158a4376e65a8fa266,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='3760052940'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-5lffnblh
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-5lffnblh
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit eb606d54fa2ddcbb7e4d0e6501ab2eb418c7fba9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.5.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.10.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (1.3.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.2.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (7.0.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (4.64.1)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (0.55.1)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (21.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.7.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (3.1.2)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+11.geb606d5) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.8.0+11.geb606d5-py3-none-any.whl size=118619 sha256=cd5048e81c24e9f95151ca59ef6aa589ffd073ca2b6742a5d1bf309edae7c44f
  Stored in directory: /tmp/pip-ephem-wheel-cache-uiwc51nc/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.8.0+11.geb606d5
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-e82azzfl
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-e82azzfl
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-dataloader>=0.0.2 in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+11.geb606d5)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Building wheels for collected packages: nvtabular
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+4.gba4c1415-cp38-cp38-linux_x86_64.whl size=257596 sha256=2d065849108d186cf0bc1599b71c5526d6571b68387682ddbb076894e0a588d5
  Stored in directory: /tmp/pip-ephem-wheel-cache-4gy9e383/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
Successfully built nvtabular
Installing collected packages: nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed nvtabular-1.6.0+4.gba4c1415
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 877 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 29%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s......................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 49%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 81%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f5cccc2bc10>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f5cccc2bc10>
cell = {'cell_type': 'code', 'execution_count': 16, 'id': '5ba81642', 'metadata': {'execution': {'iopub.status.busy': '2022-1....sort_values('date_first').reset_index(drop=True)\ndf.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))'}
cell_index = 31
exec_reply = {'buffers': [], 'content': {'ename': 'RuntimeError', 'engine_info': {'engine_id': -1, 'engine_uuid': 'bee5da1f-c2ba-4c...e, 'engine': 'bee5da1f-c2ba-4cb8-bc68-a03762731310', 'started': '2022-11-14T22:05:37.329556Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E df = get_lib().read_parquet(
E glob.glob(
E os.path.join(DATA_FOLDER, "train/.parquet")
E )
E )
E df = df.sort_values('date_first').reset_index(drop=True)
E df.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mRuntimeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [16], line 1�[0m
E �[0;32m----> 1�[0m df �[38;5;241m=�[39m �[43mget_lib�[49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 2�[0m �[43m �[49m�[43mglob�[49m�[38;5;241;43m.�[39;49m�[43mglob�[49m�[43m(�[49m
E �[1;32m 3�[0m �[43m �[49m�[43mos�[49m�[38;5;241;43m.�[39;49m�[43mpath�[49m�[38;5;241;43m.�[39;49m�[43mjoin�[49m�[43m(�[49m�[43mDATA_FOLDER�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mtrain/
.parquet�[39;49m�[38;5;124;43m"�[39;49m�[43m)�[49m
E �[1;32m 4�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 5�[0m �[43m)�[49m
E �[1;32m 6�[0m df �[38;5;241m=�[39m df�[38;5;241m.�[39msort_values(�[38;5;124m'�[39m�[38;5;124mdate_first�[39m�[38;5;124m'�[39m)�[38;5;241m.�[39mreset_index(drop�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[1;32m 7�[0m df�[38;5;241m.�[39mto_parquet(os�[38;5;241m.�[39mpath�[38;5;241m.�[39mjoin(DATA_FOLDER, �[38;5;124m"�[39m�[38;5;124mtrain_sorted.parquet�[39m�[38;5;124m"�[39m))
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:470�[0m, in �[0;36mread_parquet�[0;34m(filepath_or_buffer, engine, columns, filters, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, use_python_file_object, categorical_partitions, open_file_options, args, **kwargs)�[0m
E �[1;32m 463�[0m �[38;5;28;01mif�[39;00m filters �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E �[1;32m 464�[0m warnings�[38;5;241m.�[39mwarn(
E �[1;32m 465�[0m �[38;5;124m"�[39m�[38;5;124mParquet row-group filtering is only supported with �[39m�[38;5;124m"�[39m
E �[1;32m 466�[0m �[38;5;124m"�[39m�[38;5;124m'�[39m�[38;5;124mengine=cudf�[39m�[38;5;124m'�[39m�[38;5;124m. Use pandas or pyarrow API directly �[39m�[38;5;124m"�[39m
E �[1;32m 467�[0m �[38;5;124m"�[39m�[38;5;124mfor full CPU-based filtering functionality.�[39m�[38;5;124m"�[39m
E �[1;32m 468�[0m )
E �[0;32m--> 470�[0m �[38;5;28;01mreturn�[39;00m �[43m_parquet_to_frame�[49m�[43m(�[49m
E �[1;32m 471�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 472�[0m �[43m �[49m�[43mengine�[49m�[43m,�[49m
E �[1;32m 473�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 474�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 475�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 476�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 477�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 478�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 479�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 480�[0m �[43m �[49m�[43mpartition_keys�[49m�[38;5;241;43m=�[39;49m�[43mpartition_keys�[49m�[43m,�[49m
E �[1;32m 481�[0m �[43m �[49m�[43mpartition_categories�[49m�[38;5;241;43m=�[39;49m�[43mpartition_categories�[49m�[43m,�[49m
E �[1;32m 482�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 483�[0m �[43m�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:499�[0m, in �[0;36m_parquet_to_frame�[0;34m(paths_or_buffers, row_groups, partition_keys, partition_categories, args, **kwargs)�[0m
E �[1;32m 486�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 487�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_parquet_to_frame�[39m(
E �[1;32m 488�[0m paths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 496�[0m �[38;5;66;03m# If this is not a partitioned read, only need�[39;00m
E �[1;32m 497�[0m �[38;5;66;03m# one call to _read_parquet�[39;00m
E �[1;32m 498�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m partition_keys:
E �[0;32m--> 499�[0m �[38;5;28;01mreturn�[39;00m �[43m_read_parquet�[49m�[43m(�[49m
E �[1;32m 500�[0m �[43m �[49m�[43mpaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 501�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 502�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 503�[0m �[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 504�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 506�[0m �[38;5;66;03m# For partitioned data, we need a distinct read for each�[39;00m
E �[1;32m 507�[0m �[38;5;66;03m# unique set of partition keys. Therefore, we start by�[39;00m
E �[1;32m 508�[0m �[38;5;66;03m# aggregating all paths with matching keys using a dict�[39;00m
E �[1;32m 509�[0m plan �[38;5;241m=�[39m {}
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:576�[0m, in �[0;36m_read_parquet�[0;34m(filepaths_or_buffers, engine, columns, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, args, **kwargs)�[0m
E �[1;32m 560�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 561�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_read_parquet�[39m(
E �[1;32m 562�[0m filepaths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 573�[0m �[38;5;66;03m# Simple helper function to dispatch between�[39;00m
E �[1;32m 574�[0m �[38;5;66;03m# cudf and pyarrow to read parquet data�[39;00m
E �[1;32m 575�[0m �[38;5;28;01mif�[39;00m engine �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mcudf�[39m�[38;5;124m"�[39m:
E �[0;32m--> 576�[0m �[38;5;28;01mreturn�[39;00m �[43mlibparquet�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 577�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 578�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 579�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 580�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 581�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 582�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 583�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 584�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 585�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 586�[0m �[38;5;28;01mreturn�[39;00m cudf�[38;5;241m.�[39mDataFrame�[38;5;241m.�[39mfrom_arrow(
E �[1;32m 587�[0m pq�[38;5;241m.�[39mParquetDataset(filepaths_or_buffers)�[38;5;241m.�[39mread_pandas(
E �[1;32m 588�[0m columns�[38;5;241m=�[39mcolumns, �[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs
E �[1;32m 589�[0m )
E �[1;32m 590�[0m )
E
E File �[0;32mcudf/_lib/parquet.pyx:113�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E File �[0;32mcudf/_lib/parquet.pyx:173�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E �[0;31mRuntimeError�[0m: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas
E RuntimeError: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-14 22:05:28.002882: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-14 22:05:31.363515: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-14 22:05:31.363617: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-14 22:05:31.364944: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-14 22:05:31.365103: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-14 22:05:31.366251: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-14 22:05:31.366373: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-14 22:05:31.367468: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-14 22:05:31.367587: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:968: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_fileec5gwzvk.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 50 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 756 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11575 2399 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 863 passed, 13 skipped, 1436 warnings in 1677.68s (0:27:57) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins9035937119678634131.sh

@rnyak rnyak changed the title [Draft] session-based example using dressipi dataset and XLNet architecture Session-based example using dressipi dataset and XLNet architecture Nov 15, 2022
@rnyak rnyak added the help wanted Extra attention is needed label Nov 15, 2022
@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 930146caa956b51c56acc3f27e3f670da608a697, no merge conflicts.
Running as SYSTEM
Setting status of 930146caa956b51c56acc3f27e3f670da608a697 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1845/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 930146caa956b51c56acc3f27e3f670da608a697^{commit} # timeout=10
Checking out Revision 930146caa956b51c56acc3f27e3f670da608a697 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 930146caa956b51c56acc3f27e3f670da608a697 # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk 39e9ddf8bcbb21f9ce2771f07d3fa7d079b120c8 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins17458250003018182311.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/3/merlin-models-0.9.0+53.g930146ca.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.9,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.9,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.5.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.2,merlin-models==0.9.0+53.g930146ca,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,nvtabular @ git+https://github.com/NVIDIA-Merlin/NVTabular.git@ba4c14159a8e858c8998d4158a4376e65a8fa266,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='2734884007'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-qg8ponlw
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-qg8ponlw
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit eb606d54fa2ddcbb7e4d0e6501ab2eb418c7fba9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (1.3.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.5.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (7.0.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (4.64.1)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (3.19.5)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.2.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (0.55.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.10.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (21.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (8.1.3)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+11.geb606d5) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.8.0+11.geb606d5-py3-none-any.whl size=118619 sha256=821a0b08a3535242e1fb156d48cf49affd730b0d3722a9be99a90222700751fc
  Stored in directory: /tmp/pip-ephem-wheel-cache-5qcalv9v/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.8.0+11.geb606d5
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-ky026ie7
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-ky026ie7
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-dataloader>=0.0.2 in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+11.geb606d5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Building wheels for collected packages: nvtabular
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+4.gba4c1415-cp38-cp38-linux_x86_64.whl size=257596 sha256=74d0446d04121c342e7f560aeaf8b407c96cc96ebf850990deab2f9046aa026b
  Stored in directory: /tmp/pip-ephem-wheel-cache-_nb2pjd9/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
Successfully built nvtabular
Installing collected packages: nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed nvtabular-1.6.0+4.gba4c1415
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 878 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 29%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 30%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s......................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f87f8611ac0>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f87f8611ac0>
cell = {'cell_type': 'code', 'execution_count': 16, 'id': '5ba81642', 'metadata': {'execution': {'iopub.status.busy': '2022-1....sort_values('date_first').reset_index(drop=True)\ndf.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))'}
cell_index = 31
exec_reply = {'buffers': [], 'content': {'ename': 'RuntimeError', 'engine_info': {'engine_id': -1, 'engine_uuid': 'c76ccd78-d629-43...e, 'engine': 'c76ccd78-d629-4323-a1ad-1e6b50418343', 'started': '2022-11-15T23:39:04.229728Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E df = get_lib().read_parquet(
E glob.glob(
E os.path.join(DATA_FOLDER, "train/.parquet")
E )
E )
E df = df.sort_values('date_first').reset_index(drop=True)
E df.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mRuntimeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [16], line 1�[0m
E �[0;32m----> 1�[0m df �[38;5;241m=�[39m �[43mget_lib�[49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 2�[0m �[43m �[49m�[43mglob�[49m�[38;5;241;43m.�[39;49m�[43mglob�[49m�[43m(�[49m
E �[1;32m 3�[0m �[43m �[49m�[43mos�[49m�[38;5;241;43m.�[39;49m�[43mpath�[49m�[38;5;241;43m.�[39;49m�[43mjoin�[49m�[43m(�[49m�[43mDATA_FOLDER�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mtrain/
.parquet�[39;49m�[38;5;124;43m"�[39;49m�[43m)�[49m
E �[1;32m 4�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 5�[0m �[43m)�[49m
E �[1;32m 6�[0m df �[38;5;241m=�[39m df�[38;5;241m.�[39msort_values(�[38;5;124m'�[39m�[38;5;124mdate_first�[39m�[38;5;124m'�[39m)�[38;5;241m.�[39mreset_index(drop�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[1;32m 7�[0m df�[38;5;241m.�[39mto_parquet(os�[38;5;241m.�[39mpath�[38;5;241m.�[39mjoin(DATA_FOLDER, �[38;5;124m"�[39m�[38;5;124mtrain_sorted.parquet�[39m�[38;5;124m"�[39m))
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:470�[0m, in �[0;36mread_parquet�[0;34m(filepath_or_buffer, engine, columns, filters, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, use_python_file_object, categorical_partitions, open_file_options, args, **kwargs)�[0m
E �[1;32m 463�[0m �[38;5;28;01mif�[39;00m filters �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E �[1;32m 464�[0m warnings�[38;5;241m.�[39mwarn(
E �[1;32m 465�[0m �[38;5;124m"�[39m�[38;5;124mParquet row-group filtering is only supported with �[39m�[38;5;124m"�[39m
E �[1;32m 466�[0m �[38;5;124m"�[39m�[38;5;124m'�[39m�[38;5;124mengine=cudf�[39m�[38;5;124m'�[39m�[38;5;124m. Use pandas or pyarrow API directly �[39m�[38;5;124m"�[39m
E �[1;32m 467�[0m �[38;5;124m"�[39m�[38;5;124mfor full CPU-based filtering functionality.�[39m�[38;5;124m"�[39m
E �[1;32m 468�[0m )
E �[0;32m--> 470�[0m �[38;5;28;01mreturn�[39;00m �[43m_parquet_to_frame�[49m�[43m(�[49m
E �[1;32m 471�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 472�[0m �[43m �[49m�[43mengine�[49m�[43m,�[49m
E �[1;32m 473�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 474�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 475�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 476�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 477�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 478�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 479�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 480�[0m �[43m �[49m�[43mpartition_keys�[49m�[38;5;241;43m=�[39;49m�[43mpartition_keys�[49m�[43m,�[49m
E �[1;32m 481�[0m �[43m �[49m�[43mpartition_categories�[49m�[38;5;241;43m=�[39;49m�[43mpartition_categories�[49m�[43m,�[49m
E �[1;32m 482�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 483�[0m �[43m�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:499�[0m, in �[0;36m_parquet_to_frame�[0;34m(paths_or_buffers, row_groups, partition_keys, partition_categories, args, **kwargs)�[0m
E �[1;32m 486�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 487�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_parquet_to_frame�[39m(
E �[1;32m 488�[0m paths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 496�[0m �[38;5;66;03m# If this is not a partitioned read, only need�[39;00m
E �[1;32m 497�[0m �[38;5;66;03m# one call to _read_parquet�[39;00m
E �[1;32m 498�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m partition_keys:
E �[0;32m--> 499�[0m �[38;5;28;01mreturn�[39;00m �[43m_read_parquet�[49m�[43m(�[49m
E �[1;32m 500�[0m �[43m �[49m�[43mpaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 501�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 502�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 503�[0m �[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 504�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 506�[0m �[38;5;66;03m# For partitioned data, we need a distinct read for each�[39;00m
E �[1;32m 507�[0m �[38;5;66;03m# unique set of partition keys. Therefore, we start by�[39;00m
E �[1;32m 508�[0m �[38;5;66;03m# aggregating all paths with matching keys using a dict�[39;00m
E �[1;32m 509�[0m plan �[38;5;241m=�[39m {}
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:576�[0m, in �[0;36m_read_parquet�[0;34m(filepaths_or_buffers, engine, columns, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, args, **kwargs)�[0m
E �[1;32m 560�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 561�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_read_parquet�[39m(
E �[1;32m 562�[0m filepaths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 573�[0m �[38;5;66;03m# Simple helper function to dispatch between�[39;00m
E �[1;32m 574�[0m �[38;5;66;03m# cudf and pyarrow to read parquet data�[39;00m
E �[1;32m 575�[0m �[38;5;28;01mif�[39;00m engine �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mcudf�[39m�[38;5;124m"�[39m:
E �[0;32m--> 576�[0m �[38;5;28;01mreturn�[39;00m �[43mlibparquet�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 577�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 578�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 579�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 580�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 581�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 582�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 583�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 584�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 585�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 586�[0m �[38;5;28;01mreturn�[39;00m cudf�[38;5;241m.�[39mDataFrame�[38;5;241m.�[39mfrom_arrow(
E �[1;32m 587�[0m pq�[38;5;241m.�[39mParquetDataset(filepaths_or_buffers)�[38;5;241m.�[39mread_pandas(
E �[1;32m 588�[0m columns�[38;5;241m=�[39mcolumns, �[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs
E �[1;32m 589�[0m )
E �[1;32m 590�[0m )
E
E File �[0;32mcudf/_lib/parquet.pyx:113�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E File �[0;32mcudf/_lib/parquet.pyx:173�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E �[0;31mRuntimeError�[0m: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas
E RuntimeError: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-15 23:38:54.854637: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-15 23:38:58.227455: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-15 23:38:58.227561: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-15 23:38:58.228381: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-15 23:38:58.228443: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-15 23:38:58.229088: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-15 23:38:58.229137: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-15 23:38:58.229763: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-15 23:38:58.229814: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_file10dbnmhk.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 756 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11575 2400 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 864 passed, 13 skipped, 1438 warnings in 1675.29s (0:27:55) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins12516141345922957339.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 9997afdfc44417a0f3a08a963a5f2a751641c123, no merge conflicts.
Running as SYSTEM
Setting status of 9997afdfc44417a0f3a08a963a5f2a751641c123 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1846/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 9997afdfc44417a0f3a08a963a5f2a751641c123^{commit} # timeout=10
Checking out Revision 9997afdfc44417a0f3a08a963a5f2a751641c123 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 9997afdfc44417a0f3a08a963a5f2a751641c123 # timeout=10
Commit message: "update transformer model"
 > git rev-list --no-walk 930146caa956b51c56acc3f27e3f670da608a697 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins2771277517546710593.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/3/merlin-models-0.9.0+54.g9997afdf.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.9,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.9,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.5.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.2,merlin-models==0.9.0+54.g9997afdf,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,nvtabular @ git+https://github.com/NVIDIA-Merlin/NVTabular.git@ba4c14159a8e858c8998d4158a4376e65a8fa266,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='1396596191'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-_53c0g3i
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-_53c0g3i
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit eb606d54fa2ddcbb7e4d0e6501ab2eb418c7fba9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.10.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.2.5)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (7.0.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (0.55.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (1.3.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.5.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (0.4.3)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.4.1)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.8.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (8.1.3)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.4)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (3.1.2)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+11.geb606d5) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.8.0+11.geb606d5-py3-none-any.whl size=118619 sha256=214d8ac42ae4ef326f6eceb6a80c1ef576cb6b4786287a746453652fdd997940
  Stored in directory: /tmp/pip-ephem-wheel-cache-x5jc17wy/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.8.0+11.geb606d5
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-qg2d4kx9
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-qg2d4kx9
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+11.geb606d5)
Requirement already satisfied: merlin-dataloader>=0.0.2 in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Building wheels for collected packages: nvtabular
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+4.gba4c1415-cp38-cp38-linux_x86_64.whl size=257596 sha256=57b215f173c50a7de10eddc7d6e82361b4b8164cb9a5137fc85ade2c0779a917
  Stored in directory: /tmp/pip-ephem-wheel-cache-w0v8yoo1/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
Successfully built nvtabular
Installing collected packages: nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed nvtabular-1.6.0+4.gba4c1415
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 878 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 29%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 30%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s......................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f22b80a0cd0>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f22b80a0cd0>
cell = {'cell_type': 'code', 'execution_count': 16, 'id': '5ba81642', 'metadata': {'execution': {'iopub.status.busy': '2022-1....sort_values('date_first').reset_index(drop=True)\ndf.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))'}
cell_index = 31
exec_reply = {'buffers': [], 'content': {'ename': 'RuntimeError', 'engine_info': {'engine_id': -1, 'engine_uuid': '4d65a846-8a67-42...e, 'engine': '4d65a846-8a67-4245-b8e9-8857e5a6ef18', 'started': '2022-11-16T00:08:39.246299Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E df = get_lib().read_parquet(
E glob.glob(
E os.path.join(DATA_FOLDER, "train/.parquet")
E )
E )
E df = df.sort_values('date_first').reset_index(drop=True)
E df.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mRuntimeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [16], line 1�[0m
E �[0;32m----> 1�[0m df �[38;5;241m=�[39m �[43mget_lib�[49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 2�[0m �[43m �[49m�[43mglob�[49m�[38;5;241;43m.�[39;49m�[43mglob�[49m�[43m(�[49m
E �[1;32m 3�[0m �[43m �[49m�[43mos�[49m�[38;5;241;43m.�[39;49m�[43mpath�[49m�[38;5;241;43m.�[39;49m�[43mjoin�[49m�[43m(�[49m�[43mDATA_FOLDER�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mtrain/
.parquet�[39;49m�[38;5;124;43m"�[39;49m�[43m)�[49m
E �[1;32m 4�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 5�[0m �[43m)�[49m
E �[1;32m 6�[0m df �[38;5;241m=�[39m df�[38;5;241m.�[39msort_values(�[38;5;124m'�[39m�[38;5;124mdate_first�[39m�[38;5;124m'�[39m)�[38;5;241m.�[39mreset_index(drop�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[1;32m 7�[0m df�[38;5;241m.�[39mto_parquet(os�[38;5;241m.�[39mpath�[38;5;241m.�[39mjoin(DATA_FOLDER, �[38;5;124m"�[39m�[38;5;124mtrain_sorted.parquet�[39m�[38;5;124m"�[39m))
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:470�[0m, in �[0;36mread_parquet�[0;34m(filepath_or_buffer, engine, columns, filters, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, use_python_file_object, categorical_partitions, open_file_options, args, **kwargs)�[0m
E �[1;32m 463�[0m �[38;5;28;01mif�[39;00m filters �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E �[1;32m 464�[0m warnings�[38;5;241m.�[39mwarn(
E �[1;32m 465�[0m �[38;5;124m"�[39m�[38;5;124mParquet row-group filtering is only supported with �[39m�[38;5;124m"�[39m
E �[1;32m 466�[0m �[38;5;124m"�[39m�[38;5;124m'�[39m�[38;5;124mengine=cudf�[39m�[38;5;124m'�[39m�[38;5;124m. Use pandas or pyarrow API directly �[39m�[38;5;124m"�[39m
E �[1;32m 467�[0m �[38;5;124m"�[39m�[38;5;124mfor full CPU-based filtering functionality.�[39m�[38;5;124m"�[39m
E �[1;32m 468�[0m )
E �[0;32m--> 470�[0m �[38;5;28;01mreturn�[39;00m �[43m_parquet_to_frame�[49m�[43m(�[49m
E �[1;32m 471�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 472�[0m �[43m �[49m�[43mengine�[49m�[43m,�[49m
E �[1;32m 473�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 474�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 475�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 476�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 477�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 478�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 479�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 480�[0m �[43m �[49m�[43mpartition_keys�[49m�[38;5;241;43m=�[39;49m�[43mpartition_keys�[49m�[43m,�[49m
E �[1;32m 481�[0m �[43m �[49m�[43mpartition_categories�[49m�[38;5;241;43m=�[39;49m�[43mpartition_categories�[49m�[43m,�[49m
E �[1;32m 482�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 483�[0m �[43m�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:499�[0m, in �[0;36m_parquet_to_frame�[0;34m(paths_or_buffers, row_groups, partition_keys, partition_categories, args, **kwargs)�[0m
E �[1;32m 486�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 487�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_parquet_to_frame�[39m(
E �[1;32m 488�[0m paths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 496�[0m �[38;5;66;03m# If this is not a partitioned read, only need�[39;00m
E �[1;32m 497�[0m �[38;5;66;03m# one call to _read_parquet�[39;00m
E �[1;32m 498�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m partition_keys:
E �[0;32m--> 499�[0m �[38;5;28;01mreturn�[39;00m �[43m_read_parquet�[49m�[43m(�[49m
E �[1;32m 500�[0m �[43m �[49m�[43mpaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 501�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 502�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 503�[0m �[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 504�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 506�[0m �[38;5;66;03m# For partitioned data, we need a distinct read for each�[39;00m
E �[1;32m 507�[0m �[38;5;66;03m# unique set of partition keys. Therefore, we start by�[39;00m
E �[1;32m 508�[0m �[38;5;66;03m# aggregating all paths with matching keys using a dict�[39;00m
E �[1;32m 509�[0m plan �[38;5;241m=�[39m {}
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:576�[0m, in �[0;36m_read_parquet�[0;34m(filepaths_or_buffers, engine, columns, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, args, **kwargs)�[0m
E �[1;32m 560�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 561�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_read_parquet�[39m(
E �[1;32m 562�[0m filepaths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 573�[0m �[38;5;66;03m# Simple helper function to dispatch between�[39;00m
E �[1;32m 574�[0m �[38;5;66;03m# cudf and pyarrow to read parquet data�[39;00m
E �[1;32m 575�[0m �[38;5;28;01mif�[39;00m engine �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mcudf�[39m�[38;5;124m"�[39m:
E �[0;32m--> 576�[0m �[38;5;28;01mreturn�[39;00m �[43mlibparquet�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 577�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 578�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 579�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 580�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 581�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 582�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 583�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 584�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 585�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 586�[0m �[38;5;28;01mreturn�[39;00m cudf�[38;5;241m.�[39mDataFrame�[38;5;241m.�[39mfrom_arrow(
E �[1;32m 587�[0m pq�[38;5;241m.�[39mParquetDataset(filepaths_or_buffers)�[38;5;241m.�[39mread_pandas(
E �[1;32m 588�[0m columns�[38;5;241m=�[39mcolumns, �[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs
E �[1;32m 589�[0m )
E �[1;32m 590�[0m )
E
E File �[0;32mcudf/_lib/parquet.pyx:113�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E File �[0;32mcudf/_lib/parquet.pyx:173�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E �[0;31mRuntimeError�[0m: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas
E RuntimeError: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-16 00:08:29.843803: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-16 00:08:33.237825: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-16 00:08:33.237933: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-16 00:08:33.238791: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-16 00:08:33.238849: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-16 00:08:33.239445: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-16 00:08:33.239496: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-16 00:08:33.240275: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-16 00:08:33.240329: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_file3ye_cllj.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 756 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11575 2400 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 864 passed, 13 skipped, 1438 warnings in 1675.81s (0:27:55) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins2323149362254738311.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 088d4557d963d58ae3707e0792bf8ee2e2694d4b, no merge conflicts.
Running as SYSTEM
Setting status of 088d4557d963d58ae3707e0792bf8ee2e2694d4b to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1847/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 088d4557d963d58ae3707e0792bf8ee2e2694d4b^{commit} # timeout=10
Checking out Revision 088d4557d963d58ae3707e0792bf8ee2e2694d4b (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 088d4557d963d58ae3707e0792bf8ee2e2694d4b # timeout=10
Commit message: "fix transformer error"
 > git rev-list --no-walk 9997afdfc44417a0f3a08a963a5f2a751641c123 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins12982868784417956842.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/3/merlin-models-0.9.0+55.g088d4557.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.9,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.9,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.0.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.5.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.3,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.2,merlin-models==0.9.0+55.g088d4557,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,nvtabular @ git+https://github.com/NVIDIA-Merlin/NVTabular.git@ba4c14159a8e858c8998d4158a4376e65a8fa266,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,tensorflow-ranking==0.5.1,tensorflow-serving-api==2.9.2,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='852743331'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-qcwc2u9k
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-qcwc2u9k
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit eb606d54fa2ddcbb7e4d0e6501ab2eb418c7fba9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.5.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (21.3)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (4.64.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+11.geb606d5) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+11.geb606d5) (1.3.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.4.1)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.4.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.4)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (8.1.3)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (6.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (5.8.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+11.geb606d5) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+11.geb606d5) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+11.geb606d5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+11.geb606d5) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+11.geb606d5) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.8.0+11.geb606d5-py3-none-any.whl size=118619 sha256=2114952970c9051d48a9c417adc31cdfccb55a270c400d6d9174fae9a7e9b4a4
  Stored in directory: /tmp/pip-ephem-wheel-cache-h0v29sy9/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.8.0+11.geb606d5
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-uv0qpes4
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-uv0qpes4
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ba4c14159a8e858c8998d4158a4376e65a8fa266
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-dataloader>=0.0.2 in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (0.0.2)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+4.gba4c1415) (0.8.0+11.geb606d5)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+4.gba4c1415) (1.8.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.5.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (21.3)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.64.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.3.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+4.gba4c1415) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.4.1)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.4.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.4)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (8.1.3)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (5.8.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+4.gba4c1415) (6.0.1)
Building wheels for collected packages: nvtabular
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+4.gba4c1415-cp38-cp38-linux_x86_64.whl size=257596 sha256=a5f4b021a922c9ae66391d4cf542afd82666bb1a050b1fd1c4bbf6e1bb2cf474
  Stored in directory: /tmp/pip-ephem-wheel-cache-lno842_4/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
Successfully built nvtabular
Installing collected packages: nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed nvtabular-1.6.0+4.gba4c1415
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 878 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 5%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 8%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 22%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 28%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 29%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 30%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 30%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 46%]
tests/unit/tf/models/test_base.py s......................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 53%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 63%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 68%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 73%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 80%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 89%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f37b41378b0>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f37b41378b0>
cell = {'cell_type': 'code', 'execution_count': 16, 'id': '5ba81642', 'metadata': {'execution': {'iopub.status.busy': '2022-1....sort_values('date_first').reset_index(drop=True)\ndf.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))'}
cell_index = 31
exec_reply = {'buffers': [], 'content': {'ename': 'RuntimeError', 'engine_info': {'engine_id': -1, 'engine_uuid': 'e3b74537-142e-40...e, 'engine': 'e3b74537-142e-403e-99b3-44dc9b7eb0d3', 'started': '2022-11-16T00:38:17.758486Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E df = get_lib().read_parquet(
E glob.glob(
E os.path.join(DATA_FOLDER, "train/.parquet")
E )
E )
E df = df.sort_values('date_first').reset_index(drop=True)
E df.to_parquet(os.path.join(DATA_FOLDER, "train_sorted.parquet"))
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mRuntimeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [16], line 1�[0m
E �[0;32m----> 1�[0m df �[38;5;241m=�[39m �[43mget_lib�[49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 2�[0m �[43m �[49m�[43mglob�[49m�[38;5;241;43m.�[39;49m�[43mglob�[49m�[43m(�[49m
E �[1;32m 3�[0m �[43m �[49m�[43mos�[49m�[38;5;241;43m.�[39;49m�[43mpath�[49m�[38;5;241;43m.�[39;49m�[43mjoin�[49m�[43m(�[49m�[43mDATA_FOLDER�[49m�[43m,�[49m�[43m �[49m�[38;5;124;43m"�[39;49m�[38;5;124;43mtrain/
.parquet�[39;49m�[38;5;124;43m"�[39;49m�[43m)�[49m
E �[1;32m 4�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 5�[0m �[43m)�[49m
E �[1;32m 6�[0m df �[38;5;241m=�[39m df�[38;5;241m.�[39msort_values(�[38;5;124m'�[39m�[38;5;124mdate_first�[39m�[38;5;124m'�[39m)�[38;5;241m.�[39mreset_index(drop�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[1;32m 7�[0m df�[38;5;241m.�[39mto_parquet(os�[38;5;241m.�[39mpath�[38;5;241m.�[39mjoin(DATA_FOLDER, �[38;5;124m"�[39m�[38;5;124mtrain_sorted.parquet�[39m�[38;5;124m"�[39m))
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:470�[0m, in �[0;36mread_parquet�[0;34m(filepath_or_buffer, engine, columns, filters, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, use_python_file_object, categorical_partitions, open_file_options, args, **kwargs)�[0m
E �[1;32m 463�[0m �[38;5;28;01mif�[39;00m filters �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E �[1;32m 464�[0m warnings�[38;5;241m.�[39mwarn(
E �[1;32m 465�[0m �[38;5;124m"�[39m�[38;5;124mParquet row-group filtering is only supported with �[39m�[38;5;124m"�[39m
E �[1;32m 466�[0m �[38;5;124m"�[39m�[38;5;124m'�[39m�[38;5;124mengine=cudf�[39m�[38;5;124m'�[39m�[38;5;124m. Use pandas or pyarrow API directly �[39m�[38;5;124m"�[39m
E �[1;32m 467�[0m �[38;5;124m"�[39m�[38;5;124mfor full CPU-based filtering functionality.�[39m�[38;5;124m"�[39m
E �[1;32m 468�[0m )
E �[0;32m--> 470�[0m �[38;5;28;01mreturn�[39;00m �[43m_parquet_to_frame�[49m�[43m(�[49m
E �[1;32m 471�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 472�[0m �[43m �[49m�[43mengine�[49m�[43m,�[49m
E �[1;32m 473�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 474�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 475�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 476�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 477�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 478�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 479�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 480�[0m �[43m �[49m�[43mpartition_keys�[49m�[38;5;241;43m=�[39;49m�[43mpartition_keys�[49m�[43m,�[49m
E �[1;32m 481�[0m �[43m �[49m�[43mpartition_categories�[49m�[38;5;241;43m=�[39;49m�[43mpartition_categories�[49m�[43m,�[49m
E �[1;32m 482�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 483�[0m �[43m�[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:499�[0m, in �[0;36m_parquet_to_frame�[0;34m(paths_or_buffers, row_groups, partition_keys, partition_categories, args, **kwargs)�[0m
E �[1;32m 486�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 487�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_parquet_to_frame�[39m(
E �[1;32m 488�[0m paths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 496�[0m �[38;5;66;03m# If this is not a partitioned read, only need�[39;00m
E �[1;32m 497�[0m �[38;5;66;03m# one call to _read_parquet�[39;00m
E �[1;32m 498�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m partition_keys:
E �[0;32m--> 499�[0m �[38;5;28;01mreturn�[39;00m �[43m_read_parquet�[49m�[43m(�[49m
E �[1;32m 500�[0m �[43m �[49m�[43mpaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 501�[0m �[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m
E �[1;32m 502�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 503�[0m �[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m,�[49m
E �[1;32m 504�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 506�[0m �[38;5;66;03m# For partitioned data, we need a distinct read for each�[39;00m
E �[1;32m 507�[0m �[38;5;66;03m# unique set of partition keys. Therefore, we start by�[39;00m
E �[1;32m 508�[0m �[38;5;66;03m# aggregating all paths with matching keys using a dict�[39;00m
E �[1;32m 509�[0m plan �[38;5;241m=�[39m {}
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36mannotate.call..inner�[0;34m(args, **kwargs)�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m �[43mfunc�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mkwargs�[49m�[43m)�[49m
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:576�[0m, in �[0;36m_read_parquet�[0;34m(filepaths_or_buffers, engine, columns, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, args, **kwargs)�[0m
E �[1;32m 560�[0m �[38;5;129m@_cudf_nvtx_annotate�[39m
E �[1;32m 561�[0m �[38;5;28;01mdef�[39;00m �[38;5;21m_read_parquet�[39m(
E �[1;32m 562�[0m filepaths_or_buffers,
E �[0;32m (...)�[0m
E �[1;32m 573�[0m �[38;5;66;03m# Simple helper function to dispatch between�[39;00m
E �[1;32m 574�[0m �[38;5;66;03m# cudf and pyarrow to read parquet data�[39;00m
E �[1;32m 575�[0m �[38;5;28;01mif�[39;00m engine �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mcudf�[39m�[38;5;124m"�[39m:
E �[0;32m--> 576�[0m �[38;5;28;01mreturn�[39;00m �[43mlibparquet�[49m�[38;5;241;43m.�[39;49m�[43mread_parquet�[49m�[43m(�[49m
E �[1;32m 577�[0m �[43m �[49m�[43mfilepaths_or_buffers�[49m�[43m,�[49m
E �[1;32m 578�[0m �[43m �[49m�[43mcolumns�[49m�[38;5;241;43m=�[39;49m�[43mcolumns�[49m�[43m,�[49m
E �[1;32m 579�[0m �[43m �[49m�[43mrow_groups�[49m�[38;5;241;43m=�[39;49m�[43mrow_groups�[49m�[43m,�[49m
E �[1;32m 580�[0m �[43m �[49m�[43mskiprows�[49m�[38;5;241;43m=�[39;49m�[43mskiprows�[49m�[43m,�[49m
E �[1;32m 581�[0m �[43m �[49m�[43mnum_rows�[49m�[38;5;241;43m=�[39;49m�[43mnum_rows�[49m�[43m,�[49m
E �[1;32m 582�[0m �[43m �[49m�[43mstrings_to_categorical�[49m�[38;5;241;43m=�[39;49m�[43mstrings_to_categorical�[49m�[43m,�[49m
E �[1;32m 583�[0m �[43m �[49m�[43muse_pandas_metadata�[49m�[38;5;241;43m=�[39;49m�[43muse_pandas_metadata�[49m�[43m,�[49m
E �[1;32m 584�[0m �[43m �[49m�[43m)�[49m
E �[1;32m 585�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 586�[0m �[38;5;28;01mreturn�[39;00m cudf�[38;5;241m.�[39mDataFrame�[38;5;241m.�[39mfrom_arrow(
E �[1;32m 587�[0m pq�[38;5;241m.�[39mParquetDataset(filepaths_or_buffers)�[38;5;241m.�[39mread_pandas(
E �[1;32m 588�[0m columns�[38;5;241m=�[39mcolumns, �[38;5;241m
�[39margs, �[38;5;241m
�[39m�[38;5;241m*�[39mkwargs
E �[1;32m 589�[0m )
E �[1;32m 590�[0m )
E
E File �[0;32mcudf/_lib/parquet.pyx:113�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E File �[0;32mcudf/_lib/parquet.pyx:173�[0m, in �[0;36mcudf._lib.parquet.read_parquet�[0;34m()�[0m
E
E �[0;31mRuntimeError�[0m: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas
E RuntimeError: cuDF failure at: ../src/io/parquet/reader_impl.cu:402: All sources must have the same schemas

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-16 00:38:08.389909: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-16 00:38:11.752825: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-16 00:38:11.752932: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-16 00:38:11.753774: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-16 00:38:11.753827: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-16 00:38:11.754437: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-16 00:38:11.754487: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-16 00:38:11.755113: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-16 00:38:11.755161: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 120 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 86 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 55 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_file2wmzo7j2.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 14 90%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 169 62 63%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 244 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 104 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 756 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11575 2400 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 864 passed, 13 skipped, 1438 warnings in 1682.41s (0:28:02) =====
/usr/local/lib/python3.8/dist-packages/coverage/data.py:130: CoverageWarning: Data file '/var/jenkins_home/workspace/merlin_models/models/.coverage.10.20.17.231.3777.408053' doesn't seem to be a coverage data file: cannot unpack non-iterable NoneType object
data._warn(str(exc))
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins4177420172665763549.sh

Copy link
Contributor

@bschifferer bschifferer left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Looks great! I added one small comment to use the dmodel parameter for the first MLP block as well

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 4f5112de5f693675ba37c37940a47e458b0b7a72, no merge conflicts.
Running as SYSTEM
Setting status of 4f5112de5f693675ba37c37940a47e458b0b7a72 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1922/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 4f5112de5f693675ba37c37940a47e458b0b7a72^{commit} # timeout=10
Checking out Revision 4f5112de5f693675ba37c37940a47e458b0b7a72 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 4f5112de5f693675ba37c37940a47e458b0b7a72 # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk 42363d8b0e089586d1d1a3746801a36e68dc0d68 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins10844477794211307891.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+70.g4f5112de.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.14,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.14,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+70.g4f5112de,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='2326016832'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-rlj8xgcg
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-rlj8xgcg
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 04ff5225cee6af90b6b08070493677ac53b96836
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+16.g04ff522) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+16.g04ff522) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+16.g04ff522) (7.0.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+16.g04ff522) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+16.g04ff522) (1.10.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+16.g04ff522) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+16.g04ff522) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.8.0+16.g04ff522) (1.3.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+16.g04ff522) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+16.g04ff522) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.8.0+16.g04ff522) (1.2.5)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+16.g04ff522) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.8.0+16.g04ff522) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (2.2.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (1.0.4)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (6.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (8.1.3)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+16.g04ff522) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+16.g04ff522) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.8.0+16.g04ff522) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.8.0+16.g04ff522) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+16.g04ff522) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+16.g04ff522) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+16.g04ff522) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.8.0+16.g04ff522) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.8.0+16.g04ff522) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+16.g04ff522) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.8.0+16.g04ff522) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.8.0+16.g04ff522) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+16.g04ff522) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.8.0+16.g04ff522) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.8.0+16.g04ff522-py3-none-any.whl size=118833 sha256=a66611f12acce01d8e78f74f6182b3f93b2bdb568ed94c33623295ad08f250db
  Stored in directory: /tmp/pip-ephem-wheel-cache-dq_kdrxl/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.8.0+16.g04ff522
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-1c0n87a9
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-1c0n87a9
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit e5b7351deb9e4885c4038aa0bbc9f146d8477a0e
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.2.tar.gz (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.1/44.1 kB 1.8 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+6.ge5b7351d) (0.8.0+16.g04ff522)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+6.ge5b7351d) (1.8.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (7.0.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.10.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.3.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.2.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+6.ge5b7351d) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2.2.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.0.4)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (6.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (8.1.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+6.ge5b7351d) (4.0.0)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+6.ge5b7351d-cp38-cp38-linux_x86_64.whl size=257597 sha256=ddc4979ab967d84d4afe7d912401c7d678b28687d5921bb75b13c7a3b2c54307
  Stored in directory: /tmp/pip-ephem-wheel-cache-9cz5ml26/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2-py3-none-any.whl size=29203 sha256=6b004247302cb8fcc6f30fe0b849b20adc56cfd4c8cfbdcc5da20dcbdc5b7b99
  Stored in directory: /tmp/pip-ephem-wheel-cache-9cz5ml26/wheels/76/ef/ed/cb880e3ef5192ec5940e26fd9442247b569fb0cf8602f97137
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.2 nvtabular-1.6.0+6.ge5b7351d
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 883 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 26%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 30%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 121 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 87 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 59 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filear30_p5h.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/node.py:180: UserWarning: Port 8787 is already in use.
Perhaps you already have a cluster running?
Hosting the HTTP server on port 34661 instead
warnings.warn(

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 756 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11581 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
========= 870 passed, 13 skipped, 1453 warnings in 1845.09s (0:30:45) ==========
___________________________________ summary ____________________________________
py38-gpu: commands succeeded
congratulations :)
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins8059346956794685439.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 7517fca6ecef3f411e360793ed51f709563e8633, no merge conflicts.
Running as SYSTEM
Setting status of 7517fca6ecef3f411e360793ed51f709563e8633 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1930/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 7517fca6ecef3f411e360793ed51f709563e8633^{commit} # timeout=10
Checking out Revision 7517fca6ecef3f411e360793ed51f709563e8633 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 7517fca6ecef3f411e360793ed51f709563e8633 # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk 60c68dd8311911b00b1e5ddd0317d6e5f0be9951 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins11408462300914969896.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+72.g7517fca6.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.14,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.14,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+72.g7517fca6,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='2408053124'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-u3ojvdat
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-u3ojvdat
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 025f10da5f96c9ae470ee31133801da05fabfbf9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (0.55.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.10.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (7.0.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.2.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (3.19.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (1.3.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.5.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (21.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.7.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (8.1.3)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.0)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+12.g025f10d) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+12.g025f10d-py3-none-any.whl size=118882 sha256=0ee4a421512674480b1ea7b1bbd5deee7f889703ea3f35325197c5163c6751fb
  Stored in directory: /tmp/pip-ephem-wheel-cache-3rvpz1_1/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+12.g025f10d
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-0_dryk0k
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-0_dryk0k
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit dec7bacd4c215093e2d27b8abcb566dc0e9e1359
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+7.gdec7bacd) (0.9.0+12.g025f10d)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.2.tar.gz (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.1/44.1 kB 1.1 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+7.gdec7bacd) (1.8.1)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.55.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.10.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (7.0.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.19.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.3.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.5.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (21.3)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+7.gdec7bacd) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.7.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (8.1.3)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.1)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+7.gdec7bacd-cp38-cp38-linux_x86_64.whl size=257588 sha256=f89de9cc33e47158095c2377b1c9aff689ccf8affeba44b01c72b3be9ce2edfe
  Stored in directory: /tmp/pip-ephem-wheel-cache-uh320v7i/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2-py3-none-any.whl size=29203 sha256=e1004bbe63f2f37966c244017adcbe22237bf563970d37387cc3ffb7f342f8a2
  Stored in directory: /tmp/pip-ephem-wheel-cache-uh320v7i/wheels/76/ef/ed/cb880e3ef5192ec5940e26fd9442247b569fb0cf8602f97137
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.2 nvtabular-1.6.0+7.gdec7bacd
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 884 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 26%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 32%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
........................................... [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 65%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 72%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 85%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 121 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 87 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 59 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filel718gfy4.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 756 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11581 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
========= 871 passed, 13 skipped, 1452 warnings in 1861.93s (0:31:01) ==========
/usr/local/lib/python3.8/dist-packages/coverage/data.py:130: CoverageWarning: Data file '/var/jenkins_home/workspace/merlin_models/models/.coverage.10.20.17.231.15818.769283' doesn't seem to be a coverage data file: cannot unpack non-iterable NoneType object
data._warn(str(exc))
___________________________________ summary ____________________________________
py38-gpu: commands succeeded
congratulations :)
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins15026770635802348566.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit f0f164d3fc0e166de87e082988f6d5cb37428b2c, no merge conflicts.
Running as SYSTEM
Setting status of f0f164d3fc0e166de87e082988f6d5cb37428b2c to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1932/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse f0f164d3fc0e166de87e082988f6d5cb37428b2c^{commit} # timeout=10
Checking out Revision f0f164d3fc0e166de87e082988f6d5cb37428b2c (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f f0f164d3fc0e166de87e082988f6d5cb37428b2c # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk 6ffb409f9964ee68176bb99978b34afaa1090102 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins271187011286243050.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+74.gf0f164d3.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.14,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.14,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+74.gf0f164d3,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='2886572089'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-dlaeqh41
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-dlaeqh41
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 025f10da5f96c9ae470ee31133801da05fabfbf9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (7.0.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.5.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (3.19.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (1.3.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (4.64.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (0.55.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.10.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.12.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (8.1.3)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.8.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.4.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+12.g025f10d) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+12.g025f10d-py3-none-any.whl size=118882 sha256=52827f685eda03422ee77d398f4213647a892f41df0a5267a339fb836bd34ec6
  Stored in directory: /tmp/pip-ephem-wheel-cache-a145hfh1/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+12.g025f10d
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-t_mcwjj8
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-t_mcwjj8
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit dec7bacd4c215093e2d27b8abcb566dc0e9e1359
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+7.gdec7bacd) (1.8.1)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.2.tar.gz (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.1/44.1 kB 1.5 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+7.gdec7bacd) (0.9.0+12.g025f10d)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (7.0.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.5.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.19.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.3.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.64.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.55.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.10.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+7.gdec7bacd) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.12.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (8.1.3)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.8.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.4.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.1)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+7.gdec7bacd-cp38-cp38-linux_x86_64.whl size=257588 sha256=7a43322ce21d15b241ff68487c542863b44a0ee7a2d7766aaad64ef320e3378a
  Stored in directory: /tmp/pip-ephem-wheel-cache-1ls7cepn/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2-py3-none-any.whl size=29203 sha256=88a9fed3b6a6fca04e064aa60702cd032e01c803f62bd3f1091d4e5999a1630d
  Stored in directory: /tmp/pip-ephem-wheel-cache-1ls7cepn/wheels/76/ef/ed/cb880e3ef5192ec5940e26fd9442247b569fb0cf8602f97137
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.2 nvtabular-1.6.0+7.gdec7bacd
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py F [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py F [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_________________ test_usecase_accelerate_training_by_lazyadam _________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f5af0e83100>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
@pytest.mark.skipif(not HAS_GPU, reason="No GPU available")
def test_usecase_accelerate_training_by_lazyadam(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py:25:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f5af0e83100>
cell = {'cell_type': 'code', 'execution_count': 7, 'id': '0500ad25-29e0-40c8-85bc-6e3864107c6a', 'metadata': {'execution': {'...e_train_function_3861]']}], 'source': 'model1.compile(optimizer="adam")\nmodel1.fit(train, batch_size=1024, epochs=1)'}
cell_index = 12
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': 'd4e84b...e, 'engine': 'd4e84bdd-66e3-487c-b1b1-b4ebb95fccfc', 'started': '2022-11-22T21:30:02.166296Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model1.compile(optimizer="adam")
E model1.fit(train, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [7], line 2�[0m
E �[1;32m 1�[0m model1�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124madam�[39m�[38;5;124m"�[39m)
E �[0;32m----> 2�[0m �[43mmodel1�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mtrain�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tensorflow/python/eager/execute.py:54�[0m, in �[0;36mquick_execute�[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)�[0m
E �[1;32m 52�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 53�[0m ctx�[38;5;241m.�[39mensure_initialized()
E �[0;32m---> 54�[0m tensors �[38;5;241m=�[39m pywrap_tfe�[38;5;241m.�[39mTFE_Py_Execute(ctx�[38;5;241m.�[39m_handle, device_name, op_name,
E �[1;32m 55�[0m inputs, attrs, num_outputs)
E �[1;32m 56�[0m �[38;5;28;01mexcept�[39;00m core�[38;5;241m.�[39m_NotOkStatusException �[38;5;28;01mas�[39;00m e:
E �[1;32m 57�[0m �[38;5;28;01mif�[39;00m name �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E
E �[0;31mResourceExhaustedError�[0m: Graph execution error:
E
E Detected at node 'Adam/Adam/update_17/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_16291/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_17/mul_1'
E Detected at node 'Adam/Adam/update_17/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_16291/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_17/mul_1'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_3861]
E ResourceExhaustedError: Graph execution error:
E
E Detected at node 'Adam/Adam/update_17/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_16291/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_17/mul_1'
E Detected at node 'Adam/Adam/update_17/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_16291/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_17/mul_1'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_3861]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-22 21:29:55.268561: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-22 21:29:59.394686: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-22 21:29:59.394787: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-22 21:29:59.395655: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-22 21:29:59.395712: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13875 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-22 21:29:59.396257: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-22 21:29:59.396309: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13875 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-22 21:29:59.396909: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-22 21:29:59.396959: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13875 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-22 21:30:16.396625: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 33095680/17069309952
2022-11-22 21:30:16.396720: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4116656444
MaxInUse: 4116803644
NumAllocs: 240
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 21:30:16.396762: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 21:30:16.396783: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 21:30:16.396801: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 33
2022-11-22 21:30:16.396818: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 21:30:16.396836: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 21:30:16.396853: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 7
2022-11-22 21:30:16.396870: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 6
2022-11-22 21:30:16.396887: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 4
2022-11-22 21:30:16.396904: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 21:30:16.396921: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-11-22 21:30:16.396938: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 4
2022-11-22 21:30:16.396955: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 21:30:16.396972: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 4
2022-11-22 21:30:16.397028: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 21:30:16.397048: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 21:30:16.397065: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 21:30:16.397081: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 4
2022-11-22 21:30:16.397098: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 3
2022-11-22 21:30:16.397115: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 4
2022-11-22 21:30:16.397132: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 21:30:16.397149: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 4
2022-11-22 21:30:16.397166: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 3
2022-11-22 21:30:16.397183: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 3
2022-11-22 21:30:16.397200: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 3
2022-11-22 21:30:16.397216: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 3
2022-11-22 21:30:16.397233: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 21:30:16.397281: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 21:30:16.398875: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 33095680/17069309952
2022-11-22 21:30:16.398920: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4118064828
MaxInUse: 4118064828
NumAllocs: 243
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 21:30:16.398956: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 21:30:16.398975: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 21:30:16.398992: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 33
2022-11-22 21:30:16.399010: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 21:30:16.399027: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 21:30:16.399044: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 7
2022-11-22 21:30:16.399061: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 7
2022-11-22 21:30:16.399078: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 4
2022-11-22 21:30:16.399095: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 21:30:16.399111: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-11-22 21:30:16.399128: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 4
2022-11-22 21:30:16.399151: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 21:30:16.399168: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 4
2022-11-22 21:30:16.399185: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 21:30:16.399202: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 21:30:16.399219: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 21:30:16.399262: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 5
2022-11-22 21:30:16.399282: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 4
2022-11-22 21:30:16.399299: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 4
2022-11-22 21:30:16.399316: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 21:30:16.399333: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 4
2022-11-22 21:30:16.399350: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 3
2022-11-22 21:30:16.399366: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 3
2022-11-22 21:30:16.399383: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 3
2022-11-22 21:30:16.399400: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 3
2022-11-22 21:30:16.399417: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 21:30:16.399441: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
_______________ test_usecase_incremental_training_layer_freezing _______________

tb = <testbook.client.TestbookNotebookClient object at 0x7f5bac09c820>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_incremental_training_layer_freezing(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py:22:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f5bac09c820>
cell = {'cell_type': 'code', 'execution_count': 8, 'id': '791e06ec-c0cb-4c0f-9e41-7e5c8fa1dc4e', 'metadata': {'execution': {'...: 'model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))\nmodel.fit(day_1, batch_size=1024, epochs=1)'}
cell_index = 13
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': '7eb7e9...e, 'engine': '7eb7e96c-8c51-4cb8-ab49-e35287916eaf', 'started': '2022-11-22T21:32:27.786221Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
E model.fit(day_1, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [8], line 2�[0m
E �[1;32m 1�[0m model�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39mtf�[38;5;241m.�[39mkeras�[38;5;241m.�[39moptimizers�[38;5;241m.�[39mAdam(learning_rate�[38;5;241m=�[39m�[38;5;241m0.01�[39m))
E �[0;32m----> 2�[0m �[43mmodel�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mday_1�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py:1127�[0m, in �[0;36mfunc_graph_from_py_func..autograph_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 1125�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint:disable=broad-except�[39;00m
E �[1;32m 1126�[0m �[38;5;28;01mif�[39;00m �[38;5;28mhasattr�[39m(e, �[38;5;124m"�[39m�[38;5;124mag_error_metadata�[39m�[38;5;124m"�[39m):
E �[0;32m-> 1127�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mag_error_metadata�[38;5;241m.�[39mto_exception(e)
E �[1;32m 1128�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 1129�[0m �[38;5;28;01mraise�[39;00m
E
E �[0;31mResourceExhaustedError�[0m: in user code:
E
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function *
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function **
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step **
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 646, in apply_gradients
E self._create_all_weights(var_list)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 860, in _create_all_weights
E self._create_slots(var_list)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 124, in _create_slots
E self.add_slot(var, 'v')
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 946, in add_slot
E weight = tf.Variable(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/initializers/initializers_v2.py", line 152, in call
E return tf.zeros(shape, dtype)
E
E ResourceExhaustedError: OOM when allocating tensor with shape[3078307,88] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0 [Op:Fill]
E
E ResourceExhaustedError: in user code:
E
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function *
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function **
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step **
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 646, in apply_gradients
E self._create_all_weights(var_list)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 860, in _create_all_weights
E self._create_slots(var_list)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 124, in _create_slots
E self.add_slot(var, 'v')
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 946, in add_slot
E weight = tf.Variable(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/initializers/initializers_v2.py", line 152, in call
E return tf.zeros(shape, dtype)
E
E ResourceExhaustedError: OOM when allocating tensor with shape[3078307,88] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0 [Op:Fill]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-22 21:32:20.809178: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-22 21:32:24.952269: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-22 21:32:24.952375: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-22 21:32:24.953214: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-22 21:32:24.953273: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13875 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-22 21:32:24.953861: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-22 21:32:24.953914: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13875 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-22 21:32:24.955036: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-22 21:32:24.955182: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13875 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-22 21:32:36.728153: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 30998528/17069309952
2022-11-22 21:32:36.728197: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 2854898870
MaxInUse: 3529965729
NumAllocs: 233
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 21:32:36.728220: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 21:32:36.728228: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 2
2022-11-22 21:32:36.728235: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 26
2022-11-22 21:32:36.728240: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 3
2022-11-22 21:32:36.728246: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 6
2022-11-22 21:32:36.728251: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 6
2022-11-22 21:32:36.728257: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 21:32:36.728262: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 5
2022-11-22 21:32:36.728268: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-11-22 21:32:36.728273: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 3
2022-11-22 21:32:36.728279: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 512, 5
2022-11-22 21:32:36.728285: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 21:32:36.728290: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 3
2022-11-22 21:32:36.728316: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 32768, 5
2022-11-22 21:32:36.728324: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 60720, 1
2022-11-22 21:32:36.728329: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 84480, 1
2022-11-22 21:32:36.728335: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 122880, 3
2022-11-22 21:32:36.728340: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 131072, 2
2022-11-22 21:32:36.728346: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 3
2022-11-22 21:32:36.728351: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 3
2022-11-22 21:32:36.728357: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 3
2022-11-22 21:32:36.728362: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 3
2022-11-22 21:32:36.728368: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 2
2022-11-22 21:32:36.728373: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 3
2022-11-22 21:32:36.728379: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 3
2022-11-22 21:32:36.728384: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 3
2022-11-22 21:32:36.728390: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 2
2022-11-22 21:32:36.728395: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 2
2022-11-22 21:32:36.728429: W tensorflow/core/framework/op_kernel.cc:1745] OP_REQUIRES failed at constant_op.cc:175 : RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[3078307,88] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_fileus5pt8bq.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 54 87%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 32 89%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 103 86%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 7 90%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11583 2403 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 2 failed, 871 passed, 13 skipped, 1460 warnings in 1830.91s (0:30:30) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins6939229614436759319.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 06beaff5086901fdb5dbf40c5f790e7b3b9014e5, no merge conflicts.
Running as SYSTEM
Setting status of 06beaff5086901fdb5dbf40c5f790e7b3b9014e5 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1933/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 06beaff5086901fdb5dbf40c5f790e7b3b9014e5^{commit} # timeout=10
Checking out Revision 06beaff5086901fdb5dbf40c5f790e7b3b9014e5 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 06beaff5086901fdb5dbf40c5f790e7b3b9014e5 # timeout=10
Commit message: "update mlp blocks"
 > git rev-list --no-walk f0f164d3fc0e166de87e082988f6d5cb37428b2c # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins13041600580180809399.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+75.g06beaff5.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.14,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.14,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+75.g06beaff5,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='1796617896'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-4lcvci_a
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-4lcvci_a
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 025f10da5f96c9ae470ee31133801da05fabfbf9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (1.3.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.10.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (4.64.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (7.0.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (3.19.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.5.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (21.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (0.4.3)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.4.1)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (6.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (8.1.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+12.g025f10d) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2.8.2)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+12.g025f10d-py3-none-any.whl size=118882 sha256=4942af86060c58f940c6575866b2d233e9e7a649a8a14b7a51ebee335b1c1a94
  Stored in directory: /tmp/pip-ephem-wheel-cache-sacw1ata/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+12.g025f10d
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-gho6re39
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-gho6re39
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit dec7bacd4c215093e2d27b8abcb566dc0e9e1359
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+7.gdec7bacd) (0.9.0+12.g025f10d)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.2.tar.gz (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.1/44.1 kB 1.2 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+7.gdec7bacd) (1.8.1)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.3.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.10.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.64.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (7.0.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.19.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.5.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (21.3)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+7.gdec7bacd) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.4.3)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.4.1)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (8.1.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.8.2)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.0.0)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+7.gdec7bacd-cp38-cp38-linux_x86_64.whl size=257588 sha256=c147e7a47d124938e1ed9bf4bfba9be83d05cc6564815867d898a4e41fc86c63
  Stored in directory: /tmp/pip-ephem-wheel-cache-qdkb_lfz/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2-py3-none-any.whl size=29203 sha256=76f8311622555ba6c155e55b3c3a35e6ec7bc721e9972b8122a590b2bf75a294
  Stored in directory: /tmp/pip-ephem-wheel-cache-qdkb_lfz/wheels/76/ef/ed/cb880e3ef5192ec5940e26fd9442247b569fb0cf8602f97137
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.2 nvtabular-1.6.0+7.gdec7bacd
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_file21nw30gk.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11583 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
========= 873 passed, 13 skipped, 1460 warnings in 1862.14s (0:31:02) ==========
___________________________________ summary ____________________________________
py38-gpu: commands succeeded
congratulations :)
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins11723189988539157054.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 7e446c0139bbe92d519a36d59e1f09c620696ac0, no merge conflicts.
Running as SYSTEM
Setting status of 7e446c0139bbe92d519a36d59e1f09c620696ac0 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1934/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 7e446c0139bbe92d519a36d59e1f09c620696ac0^{commit} # timeout=10
Checking out Revision 7e446c0139bbe92d519a36d59e1f09c620696ac0 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 7e446c0139bbe92d519a36d59e1f09c620696ac0 # timeout=10
Commit message: "Delete ecommerce-session-based-next-item-prediction-for-fashion.ipynb"
 > git rev-list --no-walk 06beaff5086901fdb5dbf40c5f790e7b3b9014e5 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins10509902437678550823.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+76.g7e446c01.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.14,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.14,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+76.g7e446c01,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='4194767101'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-vbayhxm4
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-vbayhxm4
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 025f10da5f96c9ae470ee31133801da05fabfbf9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (4.64.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.2.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (7.0.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (0.55.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (3.19.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (1.3.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.10.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.12.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (6.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (8.1.3)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.0)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+12.g025f10d) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+12.g025f10d-py3-none-any.whl size=118882 sha256=83388b35fd7ecf6e74503398b2c4aac3eb94e1b66c73ccf74897e7fb3e4f5c29
  Stored in directory: /tmp/pip-ephem-wheel-cache-98__q1dq/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+12.g025f10d
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-7r4pmvum
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-7r4pmvum
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit dec7bacd4c215093e2d27b8abcb566dc0e9e1359
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+7.gdec7bacd) (0.9.0+12.g025f10d)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.2.tar.gz (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.1/44.1 kB 952.4 kB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+7.gdec7bacd) (1.8.1)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.64.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (7.0.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.55.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.19.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.3.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.10.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+7.gdec7bacd) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.12.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (8.1.3)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.1)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+7.gdec7bacd-cp38-cp38-linux_x86_64.whl size=257588 sha256=f69eb4bd99b36450902af16720eb713c38f9684feabf60efe6c3ceb5e27e1796
  Stored in directory: /tmp/pip-ephem-wheel-cache-9bsnkfz0/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2-py3-none-any.whl size=29203 sha256=6afd44032cf479ba80bb60d252cde675db1716231584fa0afd7c0c042a2de1a4
  Stored in directory: /tmp/pip-ephem-wheel-cache-9bsnkfz0/wheels/76/ef/ed/cb880e3ef5192ec5940e26fd9442247b569fb0cf8602f97137
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.2 nvtabular-1.6.0+7.gdec7bacd
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py F [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py F [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_________________ test_usecase_accelerate_training_by_lazyadam _________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f9a7c1ee130>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
@pytest.mark.skipif(not HAS_GPU, reason="No GPU available")
def test_usecase_accelerate_training_by_lazyadam(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py:25:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f9a7c1ee130>
cell = {'cell_type': 'code', 'execution_count': 7, 'id': '0500ad25-29e0-40c8-85bc-6e3864107c6a', 'metadata': {'execution': {'...e_train_function_3861]']}], 'source': 'model1.compile(optimizer="adam")\nmodel1.fit(train, batch_size=1024, epochs=1)'}
cell_index = 12
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': '03efa6...e, 'engine': '03efa641-5990-47a7-bb9e-e396dd8938d4', 'started': '2022-11-22T22:39:47.043720Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model1.compile(optimizer="adam")
E model1.fit(train, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [7], line 2�[0m
E �[1;32m 1�[0m model1�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124madam�[39m�[38;5;124m"�[39m)
E �[0;32m----> 2�[0m �[43mmodel1�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mtrain�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tensorflow/python/eager/execute.py:54�[0m, in �[0;36mquick_execute�[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)�[0m
E �[1;32m 52�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 53�[0m ctx�[38;5;241m.�[39mensure_initialized()
E �[0;32m---> 54�[0m tensors �[38;5;241m=�[39m pywrap_tfe�[38;5;241m.�[39mTFE_Py_Execute(ctx�[38;5;241m.�[39m_handle, device_name, op_name,
E �[1;32m 55�[0m inputs, attrs, num_outputs)
E �[1;32m 56�[0m �[38;5;28;01mexcept�[39;00m core�[38;5;241m.�[39m_NotOkStatusException �[38;5;28;01mas�[39;00m e:
E �[1;32m 57�[0m �[38;5;28;01mif�[39;00m name �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E
E �[0;31mResourceExhaustedError�[0m: Graph execution error:
E
E Detected at node 'Adam/Adam/update_17/mul_4' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_13901/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 214, in _resource_apply_sparse
E v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
E Node: 'Adam/Adam/update_17/mul_4'
E Detected at node 'Adam/Adam/update_17/mul_4' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_13901/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 214, in _resource_apply_sparse
E v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
E Node: 'Adam/Adam/update_17/mul_4'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_4}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_4}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_3861]
E ResourceExhaustedError: Graph execution error:
E
E Detected at node 'Adam/Adam/update_17/mul_4' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_13901/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 214, in _resource_apply_sparse
E v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
E Node: 'Adam/Adam/update_17/mul_4'
E Detected at node 'Adam/Adam/update_17/mul_4' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_13901/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 214, in _resource_apply_sparse
E v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
E Node: 'Adam/Adam/update_17/mul_4'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_4}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_4}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_3861]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-22 22:39:40.096939: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-22 22:39:44.201070: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-22 22:39:44.201182: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-22 22:39:44.201890: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-22 22:39:44.201947: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 14500 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-22 22:39:44.202530: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-22 22:39:44.202579: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 14500 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-22 22:39:44.203165: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-22 22:39:44.203219: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 14500 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-22 22:40:02.013343: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 4784128/17069309952
2022-11-22 22:40:02.013407: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4363218036
MaxInUse: 4363218036
NumAllocs: 243
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 22:40:02.013431: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 22:40:02.013441: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 22:40:02.013448: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 33
2022-11-22 22:40:02.013454: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 7
2022-11-22 22:40:02.013460: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 22:40:02.013466: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 7
2022-11-22 22:40:02.013472: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 7
2022-11-22 22:40:02.013478: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 22:40:02.013484: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 22:40:02.013490: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 4
2022-11-22 22:40:02.013497: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 4
2022-11-22 22:40:02.013503: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 22:40:02.013509: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 4
2022-11-22 22:40:02.013538: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 22:40:02.013546: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 22:40:02.013552: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 22:40:02.013558: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 3
2022-11-22 22:40:02.013564: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 4
2022-11-22 22:40:02.013570: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 3
2022-11-22 22:40:02.013576: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 22:40:02.013582: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 4
2022-11-22 22:40:02.013589: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 4
2022-11-22 22:40:02.013595: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 4
2022-11-22 22:40:02.013601: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 22:40:02.013607: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 4
2022-11-22 22:40:02.013613: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 22:40:02.013639: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 22:40:02.014392: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 39970560 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 4784128/17069309952
2022-11-22 22:40:02.014413: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4371867676
MaxInUse: 4371867676
NumAllocs: 247
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 22:40:02.014428: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 22:40:02.014436: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 22:40:02.014442: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 33
2022-11-22 22:40:02.014448: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 22:40:02.014454: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 22:40:02.014460: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 7
2022-11-22 22:40:02.014466: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 8
2022-11-22 22:40:02.014472: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 22:40:02.014478: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 22:40:02.014484: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 4
2022-11-22 22:40:02.014490: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 4
2022-11-22 22:40:02.014496: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 22:40:02.014502: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 4
2022-11-22 22:40:02.014508: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 22:40:02.014514: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 22:40:02.014520: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 22:40:02.014538: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 3
2022-11-22 22:40:02.014546: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 4
2022-11-22 22:40:02.014552: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 5
2022-11-22 22:40:02.014557: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 22:40:02.014563: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 4
2022-11-22 22:40:02.014569: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 4
2022-11-22 22:40:02.014575: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 4
2022-11-22 22:40:02.014581: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 22:40:02.014587: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 4
2022-11-22 22:40:02.014593: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 22:40:02.014602: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 22:40:02.015081: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 4784128/17069309952
2022-11-22 22:40:02.015097: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4371867676
MaxInUse: 4371867676
NumAllocs: 247
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 22:40:02.015110: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 22:40:02.015116: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 22:40:02.015122: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 33
2022-11-22 22:40:02.015128: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 22:40:02.015134: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 22:40:02.015140: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 7
2022-11-22 22:40:02.015146: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 8
2022-11-22 22:40:02.015152: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 22:40:02.015158: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 22:40:02.015164: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 4
2022-11-22 22:40:02.015170: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 4
2022-11-22 22:40:02.015176: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 22:40:02.015182: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 4
2022-11-22 22:40:02.015188: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 22:40:02.015194: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 22:40:02.015200: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 22:40:02.015206: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 3
2022-11-22 22:40:02.015212: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 4
2022-11-22 22:40:02.015227: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 5
2022-11-22 22:40:02.015235: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 22:40:02.015241: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 4
2022-11-22 22:40:02.015247: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 4
2022-11-22 22:40:02.015253: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 4
2022-11-22 22:40:02.015258: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 22:40:02.015264: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 4
2022-11-22 22:40:02.015270: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 22:40:02.015279: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 22:40:02.015804: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 56589504 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 4784128/17069309952
2022-11-22 22:40:02.015822: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4388093756
MaxInUse: 4388093756
NumAllocs: 252
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 22:40:02.015834: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 22:40:02.015841: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 22:40:02.015847: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 33
2022-11-22 22:40:02.015853: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 22:40:02.015859: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 22:40:02.015865: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 8
2022-11-22 22:40:02.015871: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 9
2022-11-22 22:40:02.015877: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 22:40:02.015883: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 22:40:02.015889: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 4
2022-11-22 22:40:02.015895: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 5
2022-11-22 22:40:02.015901: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 22:40:02.015907: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 4
2022-11-22 22:40:02.015913: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 22:40:02.015919: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 22:40:02.015925: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 22:40:02.015931: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 3
2022-11-22 22:40:02.015937: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 5
2022-11-22 22:40:02.015943: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 5
2022-11-22 22:40:02.015949: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 22:40:02.015955: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 5
2022-11-22 22:40:02.015971: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 4
2022-11-22 22:40:02.015978: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 4
2022-11-22 22:40:02.015984: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 22:40:02.015990: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 4
2022-11-22 22:40:02.015996: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 22:40:02.016005: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 22:40:02.016486: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 135407776 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 4784128/17069309952
2022-11-22 22:40:02.016503: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4388093756
MaxInUse: 4388093756
NumAllocs: 252
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 22:40:02.016514: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 22:40:02.016521: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 22:40:02.016527: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 33
2022-11-22 22:40:02.016533: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 22:40:02.016539: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 22:40:02.016545: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 8
2022-11-22 22:40:02.016550: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 9
2022-11-22 22:40:02.016556: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 22:40:02.016562: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 22:40:02.016568: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 4
2022-11-22 22:40:02.016574: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 5
2022-11-22 22:40:02.016580: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 22:40:02.016586: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 4
2022-11-22 22:40:02.016592: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 22:40:02.016598: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 22:40:02.016604: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 22:40:02.016610: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 3
2022-11-22 22:40:02.016616: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 5
2022-11-22 22:40:02.016622: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 5
2022-11-22 22:40:02.016628: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 22:40:02.016634: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 5
2022-11-22 22:40:02.016640: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 4
2022-11-22 22:40:02.016646: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 4
2022-11-22 22:40:02.016652: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 22:40:02.016667: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 4
2022-11-22 22:40:02.016674: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 22:40:02.016682: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 22:40:02.017228: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 18678720 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 4784128/17069309952
2022-11-22 22:40:02.017245: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4396692416
MaxInUse: 4396692416
NumAllocs: 261
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 22:40:02.017258: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 22:40:02.017265: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 22:40:02.017271: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 34
2022-11-22 22:40:02.017277: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 22:40:02.017283: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 22:40:02.017289: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 10
2022-11-22 22:40:02.017295: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 9
2022-11-22 22:40:02.017301: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 4
2022-11-22 22:40:02.017307: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 22:40:02.017313: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 5
2022-11-22 22:40:02.017318: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 5
2022-11-22 22:40:02.017324: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 22:40:02.017330: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 5
2022-11-22 22:40:02.017336: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 22:40:02.017342: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 22:40:02.017348: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 22:40:02.017355: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 5
2022-11-22 22:40:02.017361: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 5
2022-11-22 22:40:02.017367: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 5
2022-11-22 22:40:02.017372: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 5
2022-11-22 22:40:02.017378: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 5
2022-11-22 22:40:02.017384: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 4
2022-11-22 22:40:02.017390: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 4
2022-11-22 22:40:02.017396: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 22:40:02.017402: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 4
2022-11-22 22:40:02.017408: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 22:40:02.017426: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
_______________ test_usecase_incremental_training_layer_freezing _______________

tb = <testbook.client.TestbookNotebookClient object at 0x7f9a9414e730>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_incremental_training_layer_freezing(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py:22:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f9a9414e730>
cell = {'cell_type': 'code', 'execution_count': 8, 'id': '791e06ec-c0cb-4c0f-9e41-7e5c8fa1dc4e', 'metadata': {'execution': {'...: 'model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))\nmodel.fit(day_1, batch_size=1024, epochs=1)'}
cell_index = 13
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': 'ddb31d...e, 'engine': 'ddb31d68-4a53-4a4b-a1d6-3a228fbd6f10', 'started': '2022-11-22T22:42:14.157276Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
E model.fit(day_1, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [8], line 2�[0m
E �[1;32m 1�[0m model�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39mtf�[38;5;241m.�[39mkeras�[38;5;241m.�[39moptimizers�[38;5;241m.�[39mAdam(learning_rate�[38;5;241m=�[39m�[38;5;241m0.01�[39m))
E �[0;32m----> 2�[0m �[43mmodel�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mday_1�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tensorflow/python/eager/execute.py:54�[0m, in �[0;36mquick_execute�[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)�[0m
E �[1;32m 52�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 53�[0m ctx�[38;5;241m.�[39mensure_initialized()
E �[0;32m---> 54�[0m tensors �[38;5;241m=�[39m pywrap_tfe�[38;5;241m.�[39mTFE_Py_Execute(ctx�[38;5;241m.�[39m_handle, device_name, op_name,
E �[1;32m 55�[0m inputs, attrs, num_outputs)
E �[1;32m 56�[0m �[38;5;28;01mexcept�[39;00m core�[38;5;241m.�[39m_NotOkStatusException �[38;5;28;01mas�[39;00m e:
E �[1;32m 57�[0m �[38;5;28;01mif�[39;00m name �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E
E �[0;31mResourceExhaustedError�[0m: Graph execution error:
E
E Detected at node 'Adam/Adam/update_19/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_18299/2071866865.py", line 2, in
E model.fit(day_1, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_19/mul_1'
E Detected at node 'Adam/Adam/update_19/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_18299/2071866865.py", line 2, in
E model.fit(day_1, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_19/mul_1'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_19/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_19/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_4007]
E ResourceExhaustedError: Graph execution error:
E
E Detected at node 'Adam/Adam/update_19/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_18299/2071866865.py", line 2, in
E model.fit(day_1, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_19/mul_1'
E Detected at node 'Adam/Adam/update_19/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_18299/2071866865.py", line 2, in
E model.fit(day_1, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_19/mul_1'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_19/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_19/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_4007]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-22 22:42:07.177244: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-22 22:42:11.320715: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-22 22:42:11.320827: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-22 22:42:11.321530: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-22 22:42:11.321582: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13873 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-22 22:42:11.322203: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-22 22:42:11.322253: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13873 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-22 22:42:11.322827: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-22 22:42:11.322876: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13873 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-22 22:42:28.389566: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 3735552/17069309952
2022-11-22 22:42:28.389622: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4540644232
MaxInUse: 4540644232
NumAllocs: 278
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 22:42:28.389646: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 22:42:28.389656: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 22:42:28.389664: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 36
2022-11-22 22:42:28.389670: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 22:42:28.389677: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 22:42:28.389683: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 9
2022-11-22 22:42:28.389689: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 6
2022-11-22 22:42:28.389696: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 5
2022-11-22 22:42:28.389703: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 22:42:28.389709: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-11-22 22:42:28.389715: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 4
2022-11-22 22:42:28.389722: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 512, 6
2022-11-22 22:42:28.389728: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 22:42:28.389758: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 5
2022-11-22 22:42:28.389767: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 32768, 6
2022-11-22 22:42:28.389773: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 84480, 1
2022-11-22 22:42:28.389780: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 122880, 3
2022-11-22 22:42:28.389786: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 131072, 3
2022-11-22 22:42:28.389792: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 4
2022-11-22 22:42:28.389799: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 5
2022-11-22 22:42:28.389805: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 4
2022-11-22 22:42:28.389811: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 3
2022-11-22 22:42:28.389818: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 3
2022-11-22 22:42:28.389824: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 5
2022-11-22 22:42:28.389830: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 5
2022-11-22 22:42:28.389837: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 22:42:28.389843: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 5
2022-11-22 22:42:28.389849: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 22:42:28.389876: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 22:42:28.390564: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 3735552/17069309952
2022-11-22 22:42:28.390585: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4548070920
MaxInUse: 4548070920
NumAllocs: 281
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 22:42:28.390601: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 22:42:28.390608: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 22:42:28.390615: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 36
2022-11-22 22:42:28.390621: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 22:42:28.390628: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 22:42:28.390634: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 9
2022-11-22 22:42:28.390640: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 7
2022-11-22 22:42:28.390647: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 5
2022-11-22 22:42:28.390653: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 22:42:28.390659: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-11-22 22:42:28.390666: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 5
2022-11-22 22:42:28.390672: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 512, 6
2022-11-22 22:42:28.390678: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 22:42:28.390685: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 5
2022-11-22 22:42:28.390703: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 32768, 6
2022-11-22 22:42:28.390710: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 84480, 1
2022-11-22 22:42:28.390717: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 122880, 3
2022-11-22 22:42:28.390723: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 131072, 3
2022-11-22 22:42:28.390730: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 4
2022-11-22 22:42:28.390736: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 5
2022-11-22 22:42:28.390742: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 4
2022-11-22 22:42:28.390749: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 22:42:28.390755: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 3
2022-11-22 22:42:28.390761: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 5
2022-11-22 22:42:28.390768: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 5
2022-11-22 22:42:28.390774: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 22:42:28.390780: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 5
2022-11-22 22:42:28.390787: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 22:42:28.390796: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_file762zy6kj.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 39 90%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 54 87%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 32 89%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 103 86%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 7 90%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11583 2401 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 2 failed, 871 passed, 13 skipped, 1460 warnings in 1864.75s (0:31:04) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins9125561622571182553.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit acbb41b1116d0bf91ff54a3c87a92b32af93ec44, no merge conflicts.
Running as SYSTEM
Setting status of acbb41b1116d0bf91ff54a3c87a92b32af93ec44 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1935/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse acbb41b1116d0bf91ff54a3c87a92b32af93ec44^{commit} # timeout=10
Checking out Revision acbb41b1116d0bf91ff54a3c87a92b32af93ec44 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f acbb41b1116d0bf91ff54a3c87a92b32af93ec44 # timeout=10
Commit message: "update mlp blocks"
 > git rev-list --no-walk 7e446c0139bbe92d519a36d59e1f09c620696ac0 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins17722287682663216953.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+77.gacbb41b1.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.14,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.14,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+77.gacbb41b1,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='1443403892'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-lm7hg4ih
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-lm7hg4ih
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 025f10da5f96c9ae470ee31133801da05fabfbf9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (21.3)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (4.64.1)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (0.55.1)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (3.19.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.5.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (7.0.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (1.3.5)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (6.2)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.4)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.7.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.4.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.8.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (8.1.3)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+12.g025f10d) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+12.g025f10d-py3-none-any.whl size=118882 sha256=7e56f4bde91ef48dd5e3e18f290a9dc3ef0d7b266c0d3f9d359ae5c6a81468df
  Stored in directory: /tmp/pip-ephem-wheel-cache-fjzt305b/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+12.g025f10d
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-ki6i_uai
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-ki6i_uai
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit dec7bacd4c215093e2d27b8abcb566dc0e9e1359
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+7.gdec7bacd) (0.9.0+12.g025f10d)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.2.tar.gz (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.1/44.1 kB 1.1 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+7.gdec7bacd) (1.8.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (21.3)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.64.1)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.55.1)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.19.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.5.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (7.0.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.3.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+7.gdec7bacd) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.2)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.4)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.7.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.4.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.8.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (8.1.3)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.1)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+7.gdec7bacd-cp38-cp38-linux_x86_64.whl size=257588 sha256=399ba97676f6a8e2a72da7977cf5e9455789edf8a3ec2cdcb9829305add9ab18
  Stored in directory: /tmp/pip-ephem-wheel-cache-jnemeowk/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2-py3-none-any.whl size=29203 sha256=afb656655cba039895543be54021d8221007aaf453e9653227df52e7d04b2515
  Stored in directory: /tmp/pip-ephem-wheel-cache-jnemeowk/wheels/76/ef/ed/cb880e3ef5192ec5940e26fd9442247b569fb0cf8602f97137
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.2 nvtabular-1.6.0+7.gdec7bacd
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py F [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py F [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_________________ test_usecase_accelerate_training_by_lazyadam _________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f3bd033beb0>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
@pytest.mark.skipif(not HAS_GPU, reason="No GPU available")
def test_usecase_accelerate_training_by_lazyadam(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py:25:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f3bd033beb0>
cell = {'cell_type': 'code', 'execution_count': 7, 'id': '0500ad25-29e0-40c8-85bc-6e3864107c6a', 'metadata': {'execution': {'...e_train_function_3861]']}], 'source': 'model1.compile(optimizer="adam")\nmodel1.fit(train, batch_size=1024, epochs=1)'}
cell_index = 12
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': 'bf419e...e, 'engine': 'bf419e8d-3fc0-46b3-9ffb-7c74aea5cc99', 'started': '2022-11-22T23:15:07.490806Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model1.compile(optimizer="adam")
E model1.fit(train, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [7], line 2�[0m
E �[1;32m 1�[0m model1�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124madam�[39m�[38;5;124m"�[39m)
E �[0;32m----> 2�[0m �[43mmodel1�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mtrain�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tensorflow/python/eager/execute.py:54�[0m, in �[0;36mquick_execute�[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)�[0m
E �[1;32m 52�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 53�[0m ctx�[38;5;241m.�[39mensure_initialized()
E �[0;32m---> 54�[0m tensors �[38;5;241m=�[39m pywrap_tfe�[38;5;241m.�[39mTFE_Py_Execute(ctx�[38;5;241m.�[39m_handle, device_name, op_name,
E �[1;32m 55�[0m inputs, attrs, num_outputs)
E �[1;32m 56�[0m �[38;5;28;01mexcept�[39;00m core�[38;5;241m.�[39m_NotOkStatusException �[38;5;28;01mas�[39;00m e:
E �[1;32m 57�[0m �[38;5;28;01mif�[39;00m name �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E
E �[0;31mResourceExhaustedError�[0m: Graph execution error:
E
E Detected at node 'Adam/Adam/update_17/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_16185/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_17/mul_1'
E Detected at node 'Adam/Adam/update_17/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_16185/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_17/mul_1'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_3861]
E ResourceExhaustedError: Graph execution error:
E
E Detected at node 'Adam/Adam/update_17/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_16185/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_17/mul_1'
E Detected at node 'Adam/Adam/update_17/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_16185/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_17/mul_1'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_3861]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-22 23:15:00.547992: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-22 23:15:04.700664: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-22 23:15:04.700773: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-22 23:15:04.701584: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-22 23:15:04.701642: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13875 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-22 23:15:04.702243: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-22 23:15:04.702294: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13875 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-22 23:15:04.702852: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-22 23:15:04.702899: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13875 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-22 23:15:21.650894: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 3735552/17069309952
2022-11-22 23:15:21.650966: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4088916020
MaxInUse: 4089063088
NumAllocs: 232
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 23:15:21.650985: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 23:15:21.650994: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 23:15:21.651001: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 33
2022-11-22 23:15:21.651007: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 7
2022-11-22 23:15:21.651014: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 23:15:21.651020: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 7
2022-11-22 23:15:21.651026: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 6
2022-11-22 23:15:21.651032: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 23:15:21.651039: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 23:15:21.651045: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-11-22 23:15:21.651051: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 3
2022-11-22 23:15:21.651057: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 23:15:21.651064: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 3
2022-11-22 23:15:21.651093: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 23:15:21.651100: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 23:15:21.651107: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 23:15:21.651113: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 3
2022-11-22 23:15:21.651119: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 3
2022-11-22 23:15:21.651125: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 3
2022-11-22 23:15:21.651132: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 3
2022-11-22 23:15:21.651138: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 3
2022-11-22 23:15:21.651144: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 3
2022-11-22 23:15:21.651151: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 3
2022-11-22 23:15:21.651157: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 3
2022-11-22 23:15:21.651163: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 3
2022-11-22 23:15:21.651169: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 23:15:21.651200: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 23:15:21.657200: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 3735552/17069309952
2022-11-22 23:15:21.657225: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4515614520
MaxInUse: 4515614520
NumAllocs: 249
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 23:15:21.657247: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 23:15:21.657256: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 23:15:21.657263: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 34
2022-11-22 23:15:21.657269: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 7
2022-11-22 23:15:21.657275: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 23:15:21.657282: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 7
2022-11-22 23:15:21.657288: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 7
2022-11-22 23:15:21.657294: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 4
2022-11-22 23:15:21.657300: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 23:15:21.657307: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-11-22 23:15:21.657313: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 4
2022-11-22 23:15:21.657319: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 23:15:21.657325: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 5
2022-11-22 23:15:21.657332: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 23:15:21.657338: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-11-22 23:15:21.657345: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 23:15:21.657362: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 4
2022-11-22 23:15:21.657370: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 5
2022-11-22 23:15:21.657377: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 4
2022-11-22 23:15:21.657383: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 3
2022-11-22 23:15:21.657389: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 4
2022-11-22 23:15:21.657395: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 5
2022-11-22 23:15:21.657402: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 4
2022-11-22 23:15:21.657408: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 23:15:21.657414: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 5
2022-11-22 23:15:21.657420: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 23:15:21.657430: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
_______________ test_usecase_incremental_training_layer_freezing _______________

tb = <testbook.client.TestbookNotebookClient object at 0x7f3bd031e6a0>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_incremental_training_layer_freezing(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py:22:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f3bd031e6a0>
cell = {'cell_type': 'code', 'execution_count': 8, 'id': '791e06ec-c0cb-4c0f-9e41-7e5c8fa1dc4e', 'metadata': {'execution': {'...: 'model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))\nmodel.fit(day_1, batch_size=1024, epochs=1)'}
cell_index = 13
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': 'f234b0...e, 'engine': 'f234b033-baf6-4c0c-9357-44fa5e28ca25', 'started': '2022-11-22T23:17:31.950941Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
E model.fit(day_1, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [8], line 2�[0m
E �[1;32m 1�[0m model�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39mtf�[38;5;241m.�[39mkeras�[38;5;241m.�[39moptimizers�[38;5;241m.�[39mAdam(learning_rate�[38;5;241m=�[39m�[38;5;241m0.01�[39m))
E �[0;32m----> 2�[0m �[43mmodel�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mday_1�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tensorflow/python/eager/execute.py:54�[0m, in �[0;36mquick_execute�[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)�[0m
E �[1;32m 52�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 53�[0m ctx�[38;5;241m.�[39mensure_initialized()
E �[0;32m---> 54�[0m tensors �[38;5;241m=�[39m pywrap_tfe�[38;5;241m.�[39mTFE_Py_Execute(ctx�[38;5;241m.�[39m_handle, device_name, op_name,
E �[1;32m 55�[0m inputs, attrs, num_outputs)
E �[1;32m 56�[0m �[38;5;28;01mexcept�[39;00m core�[38;5;241m.�[39m_NotOkStatusException �[38;5;28;01mas�[39;00m e:
E �[1;32m 57�[0m �[38;5;28;01mif�[39;00m name �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E
E �[0;31mResourceExhaustedError�[0m: Graph execution error:
E
E Detected at node 'Adam/Adam/update_19/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_17153/2071866865.py", line 2, in
E model.fit(day_1, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_19/mul_1'
E Detected at node 'Adam/Adam/update_19/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_17153/2071866865.py", line 2, in
E model.fit(day_1, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_19/mul_1'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_19/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_19/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_4007]
E ResourceExhaustedError: Graph execution error:
E
E Detected at node 'Adam/Adam/update_19/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_17153/2071866865.py", line 2, in
E model.fit(day_1, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_19/mul_1'
E Detected at node 'Adam/Adam/update_19/mul_1' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_17153/2071866865.py", line 2, in
E model.fit(day_1, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 206, in _resource_apply_sparse
E m_t = tf.compat.v1.assign(m, m * coefficients['beta_1_t'],
E Node: 'Adam/Adam/update_19/mul_1'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_19/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_19/mul_1}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_4007]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-22 23:17:24.941326: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-22 23:17:29.102562: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-22 23:17:29.102663: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-22 23:17:29.103495: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-22 23:17:29.103554: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13875 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-22 23:17:29.104146: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-22 23:17:29.104197: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13875 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-22 23:17:29.104850: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-22 23:17:29.104899: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13875 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-22 23:17:46.298756: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 30998528/17069309952
2022-11-22 23:17:46.298812: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4232355172
MaxInUse: 4232355172
NumAllocs: 268
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 23:17:46.298830: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 23:17:46.298838: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 23:17:46.298844: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 35
2022-11-22 23:17:46.298851: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 23:17:46.298857: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 23:17:46.298863: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 6
2022-11-22 23:17:46.298869: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 7
2022-11-22 23:17:46.298875: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 23:17:46.298881: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 23:17:46.298888: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 4
2022-11-22 23:17:46.298894: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 3
2022-11-22 23:17:46.298900: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 512, 6
2022-11-22 23:17:46.298906: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 23:17:46.298938: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 4
2022-11-22 23:17:46.298947: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 32768, 6
2022-11-22 23:17:46.298953: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 84480, 1
2022-11-22 23:17:46.298959: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 122880, 3
2022-11-22 23:17:46.298965: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 131072, 3
2022-11-22 23:17:46.298971: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 4
2022-11-22 23:17:46.298977: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 3
2022-11-22 23:17:46.298983: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 4
2022-11-22 23:17:46.298990: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 4
2022-11-22 23:17:46.298996: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 4
2022-11-22 23:17:46.299002: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 4
2022-11-22 23:17:46.299008: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 4
2022-11-22 23:17:46.299014: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 4
2022-11-22 23:17:46.299021: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 3
2022-11-22 23:17:46.299027: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 23:17:46.299049: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-11-22 23:17:46.304814: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 30998528/17069309952
2022-11-22 23:17:46.304840: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 4647799624
MaxInUse: 4647799624
NumAllocs: 293
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 23:17:46.304857: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 23:17:46.304865: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-11-22 23:17:46.304872: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 36
2022-11-22 23:17:46.304879: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-11-22 23:17:46.304886: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-11-22 23:17:46.304893: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 10
2022-11-22 23:17:46.304899: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 10
2022-11-22 23:17:46.304906: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 5
2022-11-22 23:17:46.304912: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 6
2022-11-22 23:17:46.304919: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 5
2022-11-22 23:17:46.304925: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 5
2022-11-22 23:17:46.304932: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 512, 6
2022-11-22 23:17:46.304938: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 23:17:46.304945: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 5
2022-11-22 23:17:46.304964: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 32768, 6
2022-11-22 23:17:46.304972: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 84480, 1
2022-11-22 23:17:46.304979: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 122880, 3
2022-11-22 23:17:46.304986: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 131072, 3
2022-11-22 23:17:46.304992: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 5
2022-11-22 23:17:46.304998: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 5
2022-11-22 23:17:46.305005: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 5
2022-11-22 23:17:46.305012: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 5
2022-11-22 23:17:46.305018: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 5
2022-11-22 23:17:46.305025: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 5
2022-11-22 23:17:46.305032: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 5
2022-11-22 23:17:46.305038: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 5
2022-11-22 23:17:46.305045: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 5
2022-11-22 23:17:46.305052: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-11-22 23:17:46.305062: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filejnt_g_jb.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 54 87%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 32 89%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 103 86%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 7 90%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11583 2403 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 2 failed, 871 passed, 13 skipped, 1460 warnings in 1850.89s (0:30:50) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins2102441647632675997.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit dff99ff9ca6f3b40551434919e9508967284927f, no merge conflicts.
Running as SYSTEM
Setting status of dff99ff9ca6f3b40551434919e9508967284927f to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1936/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse dff99ff9ca6f3b40551434919e9508967284927f^{commit} # timeout=10
Checking out Revision dff99ff9ca6f3b40551434919e9508967284927f (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f dff99ff9ca6f3b40551434919e9508967284927f # timeout=10
Commit message: "fix typo"
 > git rev-list --no-walk acbb41b1116d0bf91ff54a3c87a92b32af93ec44 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins3961798536982193.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+78.gdff99ff9.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.14,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.14,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+78.gdff99ff9,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='4279243378'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-kftwduqx
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-kftwduqx
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 025f10da5f96c9ae470ee31133801da05fabfbf9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (1.3.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (0.55.1)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (21.3)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.2.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.5.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.10.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (4.64.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.12.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (3.1.2)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (8.1.3)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.8.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+12.g025f10d) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+12.g025f10d-py3-none-any.whl size=118882 sha256=17ecfb0a2c53551b3b96a82a2ae97e7fd827c1a5334601f110c0f15735c8a860
  Stored in directory: /tmp/pip-ephem-wheel-cache-asnczgnq/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+12.g025f10d
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-9nwffy3v
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-9nwffy3v
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit dec7bacd4c215093e2d27b8abcb566dc0e9e1359
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+7.gdec7bacd) (1.8.1)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.2.tar.gz (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.1/44.1 kB 12.7 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+7.gdec7bacd) (0.9.0+12.g025f10d)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.3.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.55.1)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.19.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (21.3)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.5.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.10.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.64.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.3.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+7.gdec7bacd) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.12.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.1.2)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (8.1.3)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (5.8.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+7.gdec7bacd) (4.0.0)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+7.gdec7bacd-cp38-cp38-linux_x86_64.whl size=257588 sha256=8a63b25dade6dabb5c0a62131705a6c62fec2bed82ff28480d59df15e86de3d2
  Stored in directory: /tmp/pip-ephem-wheel-cache-okrzvaez/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2-py3-none-any.whl size=29203 sha256=aab437dd329a986ef22d9f0c91d2c009512e9b7bf4f154508b2abd21a2017655
  Stored in directory: /tmp/pip-ephem-wheel-cache-okrzvaez/wheels/76/ef/ed/cb880e3ef5192ec5940e26fd9442247b569fb0cf8602f97137
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.2 nvtabular-1.6.0+7.gdec7bacd
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py F [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_________________ test_usecase_accelerate_training_by_lazyadam _________________

tb = <testbook.client.TestbookNotebookClient object at 0x7fa7b42a6190>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
@pytest.mark.skipif(not HAS_GPU, reason="No GPU available")
def test_usecase_accelerate_training_by_lazyadam(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py:25:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7fa7b42a6190>
cell = {'cell_type': 'code', 'execution_count': 7, 'id': '0500ad25-29e0-40c8-85bc-6e3864107c6a', 'metadata': {'execution': {'...pu_async_0 [Op:Fill]\n']}], 'source': 'model1.compile(optimizer="adam")\nmodel1.fit(train, batch_size=1024, epochs=1)'}
cell_index = 12
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': '8e2cd8...e, 'engine': '8e2cd85c-e1e3-4d37-9028-a96cb24052fe', 'started': '2022-11-22T23:51:07.214332Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model1.compile(optimizer="adam")
E model1.fit(train, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [7], line 2�[0m
E �[1;32m 1�[0m model1�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124madam�[39m�[38;5;124m"�[39m)
E �[0;32m----> 2�[0m �[43mmodel1�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mtrain�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py:1127�[0m, in �[0;36mfunc_graph_from_py_func..autograph_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 1125�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint:disable=broad-except�[39;00m
E �[1;32m 1126�[0m �[38;5;28;01mif�[39;00m �[38;5;28mhasattr�[39m(e, �[38;5;124m"�[39m�[38;5;124mag_error_metadata�[39m�[38;5;124m"�[39m):
E �[0;32m-> 1127�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mag_error_metadata�[38;5;241m.�[39mto_exception(e)
E �[1;32m 1128�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 1129�[0m �[38;5;28;01mraise�[39;00m
E
E �[0;31mResourceExhaustedError�[0m: in user code:
E
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function *
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function **
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step **
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 646, in apply_gradients
E self._create_all_weights(var_list)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 860, in _create_all_weights
E self._create_slots(var_list)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 124, in _create_slots
E self.add_slot(var, 'v')
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 946, in add_slot
E weight = tf.Variable(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/initializers/initializers_v2.py", line 152, in call
E return tf.zeros(shape, dtype)
E
E ResourceExhaustedError: OOM when allocating tensor with shape[3078307,88] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0 [Op:Fill]
E
E ResourceExhaustedError: in user code:
E
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function *
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function **
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step **
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 724, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 646, in apply_gradients
E self._create_all_weights(var_list)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 860, in _create_all_weights
E self._create_slots(var_list)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/adam.py", line 124, in _create_slots
E self.add_slot(var, 'v')
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 946, in add_slot
E weight = tf.Variable(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/initializers/initializers_v2.py", line 152, in call
E return tf.zeros(shape, dtype)
E
E ResourceExhaustedError: OOM when allocating tensor with shape[3078307,88] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0 [Op:Fill]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-22 23:51:00.213925: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-22 23:51:04.454786: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-22 23:51:04.454890: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-22 23:51:04.455770: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-22 23:51:04.455830: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13875 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-22 23:51:04.456399: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-22 23:51:04.456450: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13875 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-22 23:51:04.457078: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-22 23:51:04.457127: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13875 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-22 23:51:16.168276: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 5832704/17069309952
2022-11-22 23:51:16.168326: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 2854623870
MaxInUse: 3530052209
NumAllocs: 209
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-22 23:51:16.168352: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-22 23:51:16.168361: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 2
2022-11-22 23:51:16.168368: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 24
2022-11-22 23:51:16.168374: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 3
2022-11-22 23:51:16.168380: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 6
2022-11-22 23:51:16.168386: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 6
2022-11-22 23:51:16.168392: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 3
2022-11-22 23:51:16.168398: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 5
2022-11-22 23:51:16.168404: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-11-22 23:51:16.168410: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 3
2022-11-22 23:51:16.168416: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-22 23:51:16.168422: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 3
2022-11-22 23:51:16.168428: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-11-22 23:51:16.168458: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 2
2022-11-22 23:51:16.168466: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 147200, 1
2022-11-22 23:51:16.168472: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 204800, 1
2022-11-22 23:51:16.168478: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 3
2022-11-22 23:51:16.168484: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 3
2022-11-22 23:51:16.168489: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 3
2022-11-22 23:51:16.168495: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 3
2022-11-22 23:51:16.168501: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 2
2022-11-22 23:51:16.168507: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 3
2022-11-22 23:51:16.168513: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 3
2022-11-22 23:51:16.168519: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 3
2022-11-22 23:51:16.168525: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 2
2022-11-22 23:51:16.168531: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 2
2022-11-22 23:51:16.168565: W tensorflow/core/framework/op_kernel.cc:1745] OP_REQUIRES failed at constant_op.cc:175 : RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[3078307,88] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_file8rjpwwkm.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11583 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 872 passed, 13 skipped, 1460 warnings in 1836.14s (0:30:36) =====
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins12352358108783039628.sh

@rnyak
Copy link
Contributor Author

rnyak commented Nov 23, 2022

rerun tests

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit dff99ff9ca6f3b40551434919e9508967284927f, no merge conflicts.
Running as SYSTEM
Setting status of dff99ff9ca6f3b40551434919e9508967284927f to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1938/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse dff99ff9ca6f3b40551434919e9508967284927f^{commit} # timeout=10
Checking out Revision dff99ff9ca6f3b40551434919e9508967284927f (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f dff99ff9ca6f3b40551434919e9508967284927f # timeout=10
Commit message: "fix typo"
 > git rev-list --no-walk 66261ae483da683ee9eb69c7dbe646c1bcf52be5 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins16125901191100661011.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+78.gdff99ff9.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.15,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.15,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+78.gdff99ff9,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='237082515'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-xkrtj7g2
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-xkrtj7g2
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 025f10da5f96c9ae470ee31133801da05fabfbf9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.2.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.5.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (7.0.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (3.19.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (1.3.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (0.55.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (21.3)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.10.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (0.4.3)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.2.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.7.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (6.2)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+12.g025f10d) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2.8.2)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+12.g025f10d-py3-none-any.whl size=118882 sha256=5a92eb1b36435725c91ddba3e8138a551e411fd40067fc7ff63ffd76367ee86d
  Stored in directory: /tmp/pip-ephem-wheel-cache-2d64btk4/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+12.g025f10d
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-aze2g_j4
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-aze2g_j4
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit fc7f0b2620ae311db13ee8180cbf7226ef09d6de
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+8.gfc7f0b26) (1.8.1)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+8.gfc7f0b26) (0.9.0+12.g025f10d)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.2.tar.gz (44 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 44.1/44.1 kB 1.5 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.2.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2022.5.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (7.0.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (3.19.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.3.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (0.55.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (21.3)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.10.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2022.3.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+8.gfc7f0b26) (1.20.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (0.4.3)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2.2.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.7.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (6.2)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2.8.2)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+8.gfc7f0b26) (6.0.1)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+8.gfc7f0b26-cp38-cp38-linux_x86_64.whl size=257586 sha256=b83a5e914d2497eab16c73617dc11b7b1d5bfe563407837fed6c071c0b7ce16a
  Stored in directory: /tmp/pip-ephem-wheel-cache-83ocvr_r/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2-py3-none-any.whl size=29203 sha256=4e235a05aedd97f9823ca0d2ee90ef05fd4999635f3953d388bffb5120f8ab92
  Stored in directory: /tmp/pip-ephem-wheel-cache-83ocvr_r/wheels/76/ef/ed/cb880e3ef5192ec5940e26fd9442247b569fb0cf8602f97137
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.2 nvtabular-1.6.0+8.gfc7f0b26
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filekbfrdet3.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 60 20 67%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11583 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
========= 873 passed, 13 skipped, 1460 warnings in 1830.49s (0:30:30) ==========
___________________________________ summary ____________________________________
py38-gpu: commands succeeded
congratulations :)
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins3143713641531579790.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 49ab368bb7a926f60bddf68427827f41bb4e7ffe, no merge conflicts.
Running as SYSTEM
Setting status of 49ab368bb7a926f60bddf68427827f41bb4e7ffe to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1943/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 49ab368bb7a926f60bddf68427827f41bb4e7ffe^{commit} # timeout=10
Checking out Revision 49ab368bb7a926f60bddf68427827f41bb4e7ffe (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 49ab368bb7a926f60bddf68427827f41bb4e7ffe # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk d3c86fd85479c549cd61e3d23a37dbaa2cb47597 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins11207080786361180622.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+80.g49ab368b.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.15,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.15,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==5.0.4,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+80.g49ab368b,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.9.1,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==2.5.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='841901509'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-cj8kj0g5
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-cj8kj0g5
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 025f10da5f96c9ae470ee31133801da05fabfbf9
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (1.3.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.2.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (7.0.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (21.3)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+12.g025f10d) (2022.5.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+12.g025f10d) (3.19.5)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.2.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (5.8.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.7.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+12.g025f10d) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+12.g025f10d) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+12.g025f10d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+12.g025f10d) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+12.g025f10d) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+12.g025f10d-py3-none-any.whl size=118882 sha256=6e7fcc9f38165ca99674fb5249414fb6eca355f6be5cc7f23640d03a35140b47
  Stored in directory: /tmp/pip-ephem-wheel-cache-37p5gr90/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+12.g025f10d
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-iuhmldhl
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-iuhmldhl
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ceef1cae713c283070496ec3483d13f0be5d258b
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+9.gceef1cae) (1.8.1)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.3.tar.gz (48 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.3/48.3 kB 1.8 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+9.gceef1cae) (0.9.0+12.g025f10d)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.3.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2022.3.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2022.3.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.2.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (7.0.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (21.3)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2022.5.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (3.19.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+9.gceef1cae) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2.2.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (5.8.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.7.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+9.gceef1cae) (6.0.1)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+9.gceef1cae-cp38-cp38-linux_x86_64.whl size=257587 sha256=045f598d53eef1e29737083c606eaeb16152184bdef048e0fd82b1a7a31e1868
  Stored in directory: /tmp/pip-ephem-wheel-cache-10zw8w3n/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.3-py3-none-any.whl size=37647 sha256=d05feafce0c6dc4746ddad8a2d4f2db98e159ed2371182dca27833e8e0dcf1d3
  Stored in directory: /tmp/pip-ephem-wheel-cache-10zw8w3n/wheels/1c/a3/4a/0feebb30e0c8cb7ba7046544390b43c7017a2195232f5305a1
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.3 nvtabular-1.6.0+9.gceef1cae
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py F [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py F [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_____________________ test_usecase_ecommerce_session_based _____________________

tb = <testbook.client.TestbookNotebookClient object at 0x7f9d31c55df0>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_ecommerce_session_based(tb):
    tb.inject(
        """
        import os
        from unittest.mock import patch
        from merlin.datasets.synthetic import generate_data
        mock_train, mock_valid = generate_data(
            input="dressipi2022-preprocessed",
            num_rows=10000,
            set_sizes=(0.8, 0.2)
        )
        p1 = patch(
            "merlin.datasets.ecommerce.get_dressipi2022",
            return_value=[mock_train, mock_valid]
        )
        p1.start()
        os.environ["DATA_FOLDER"] = "/tmp/dressipi2022/"
        os.environ["EPOCHS"] = "1"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_ecommerce_session_based.py:35:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f9d31c55df0>
cell = {'cell_type': 'code', 'execution_count': 40, 'id': '7dfa4858-d87c-43db-a6fa-c02a55e83941', 'metadata': {'execution': {...25]']}], 'source': 'history = model_bi_lstm.fit(\n loader,\n validation_data=val_loader,\n epochs=EPOCHS,\n)'}
cell_index = 83
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': '06da88...e, 'engine': '06da88c9-c050-444d-8ed6-349642113d50', 'started': '2022-11-23T16:33:58.081567Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E history = model_bi_lstm.fit(
E loader,
E validation_data=val_loader,
E epochs=EPOCHS,
E )
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [40], line 1�[0m
E �[0;32m----> 1�[0m history �[38;5;241m=�[39m �[43mmodel_bi_lstm�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m
E �[1;32m 2�[0m �[43m �[49m�[43mloader�[49m�[43m,�[49m
E �[1;32m 3�[0m �[43m �[49m�[43mvalidation_data�[49m�[38;5;241;43m=�[39;49m�[43mval_loader�[49m�[43m,�[49m
E �[1;32m 4�[0m �[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[43mEPOCHS�[49m�[43m,�[49m
E �[1;32m 5�[0m �[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tensorflow/python/eager/execute.py:54�[0m, in �[0;36mquick_execute�[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)�[0m
E �[1;32m 52�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 53�[0m ctx�[38;5;241m.�[39mensure_initialized()
E �[0;32m---> 54�[0m tensors �[38;5;241m=�[39m pywrap_tfe�[38;5;241m.�[39mTFE_Py_Execute(ctx�[38;5;241m.�[39m_handle, device_name, op_name,
E �[1;32m 55�[0m inputs, attrs, num_outputs)
E �[1;32m 56�[0m �[38;5;28;01mexcept�[39;00m core�[38;5;241m.�[39m_NotOkStatusException �[38;5;28;01mas�[39;00m e:
E �[1;32m 57�[0m �[38;5;28;01mif�[39;00m name �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E
E �[0;31mResourceExhaustedError�[0m: Graph execution error:
E
E Detected at node 'cond/TopKV2' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_20880/3477623819.py", line 1, in
E history = model_bi_lstm.fit(
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 726, in train_step
E metrics = self.train_compute_metrics(outputs, self.compiled_metrics)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 788, in train_compute_metrics
E if self._should_compute_train_metrics_for_batch:
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 789, in train_compute_metrics
E return self.compute_metrics(outputs, compiled_metrics)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 829, in compute_metrics
E compiled_metrics.update_state(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/compile_utils.py", line 501, in update_state
E metric_obj.update_state(y_t, y_p, sample_weight=mask)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/metrics_utils.py", line 70, in decorated
E update_op = update_state_fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/metrics/base_metric.py", line 140, in update_state_fn
E return ag_update_state(*args, **kwargs)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/metrics/topk.py", line 431, in update_state
E y_pred, y_true, label_relevant_counts_from_targets = extract_topk(
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py", line 186, in extract_topk
E topk_predictions, topk_indices = tf.math.top_k(predictions, k)
E Node: 'cond/TopKV2'
E Detected at node 'cond/TopKV2' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_20880/3477623819.py", line 1, in
E history = model_bi_lstm.fit(
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 726, in train_step
E metrics = self.train_compute_metrics(outputs, self.compiled_metrics)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 788, in train_compute_metrics
E if self._should_compute_train_metrics_for_batch:
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 789, in train_compute_metrics
E return self.compute_metrics(outputs, compiled_metrics)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 829, in compute_metrics
E compiled_metrics.update_state(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/compile_utils.py", line 501, in update_state
E metric_obj.update_state(y_t, y_p, sample_weight=mask)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/metrics_utils.py", line 70, in decorated
E update_op = update_state_fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/metrics/base_metric.py", line 140, in update_state_fn
E return ag_update_state(*args, **kwargs)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/metrics/topk.py", line 431, in update_state
E y_pred, y_true, label_relevant_counts_from_targets = extract_topk(
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py", line 186, in extract_topk
E topk_predictions, topk_indices = tf.math.top_k(predictions, k)
E Node: 'cond/TopKV2'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[55017727] and type int8 on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0
E [[{{node cond/TopKV2}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[gradient_tape/model_1/parallel_block_3/sequential_block_4/bidirectional/backward_lstm/RaggedToTensor/strided_slice/_132]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[55017727] and type int8 on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0
E [[{{node cond/TopKV2}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_18725]
E ResourceExhaustedError: Graph execution error:
E
E Detected at node 'cond/TopKV2' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_20880/3477623819.py", line 1, in
E history = model_bi_lstm.fit(
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 726, in train_step
E metrics = self.train_compute_metrics(outputs, self.compiled_metrics)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 788, in train_compute_metrics
E if self._should_compute_train_metrics_for_batch:
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 789, in train_compute_metrics
E return self.compute_metrics(outputs, compiled_metrics)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 829, in compute_metrics
E compiled_metrics.update_state(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/compile_utils.py", line 501, in update_state
E metric_obj.update_state(y_t, y_p, sample_weight=mask)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/metrics_utils.py", line 70, in decorated
E update_op = update_state_fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/metrics/base_metric.py", line 140, in update_state_fn
E return ag_update_state(*args, **kwargs)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/metrics/topk.py", line 431, in update_state
E y_pred, y_true, label_relevant_counts_from_targets = extract_topk(
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py", line 186, in extract_topk
E topk_predictions, topk_indices = tf.math.top_k(predictions, k)
E Node: 'cond/TopKV2'
E Detected at node 'cond/TopKV2' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_20880/3477623819.py", line 1, in
E history = model_bi_lstm.fit(
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 910, in fit
E out = super().fit(**fit_kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 726, in train_step
E metrics = self.train_compute_metrics(outputs, self.compiled_metrics)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 788, in train_compute_metrics
E if self._should_compute_train_metrics_for_batch:
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 789, in train_compute_metrics
E return self.compute_metrics(outputs, compiled_metrics)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 829, in compute_metrics
E compiled_metrics.update_state(
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/engine/compile_utils.py", line 501, in update_state
E metric_obj.update_state(y_t, y_p, sample_weight=mask)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/metrics_utils.py", line 70, in decorated
E update_op = update_state_fn(*args, **kwargs)
E File "/var/jenkins_home/.local/lib/python3.8/site-packages/keras/metrics/base_metric.py", line 140, in update_state_fn
E return ag_update_state(*args, **kwargs)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/metrics/topk.py", line 431, in update_state
E y_pred, y_true, label_relevant_counts_from_targets = extract_topk(
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py", line 186, in extract_topk
E topk_predictions, topk_indices = tf.math.top_k(predictions, k)
E Node: 'cond/TopKV2'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[55017727] and type int8 on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0
E [[{{node cond/TopKV2}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[gradient_tape/model_1/parallel_block_3/sequential_block_4/bidirectional/backward_lstm/RaggedToTensor/strided_slice/_132]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[55017727] and type int8 on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0
E [[{{node cond/TopKV2}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_18725]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-23 16:33:31.956519: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-23 16:33:35.462571: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-23 16:33:35.462682: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-23 16:33:35.463582: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-23 16:33:35.463640: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13851 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-23 16:33:35.464221: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-23 16:33:35.464273: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13851 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-23 16:33:35.464859: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-23 16:33:35.464911: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13851 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-23 16:33:58.534161: I tensorflow/stream_executor/cuda/cuda_dnn.cc:384] Loaded cuDNN version 8500
2022-11-23 16:34:08.076764: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 55017727 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 29949952/17069309952
2022-11-23 16:34:08.076818: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 295098860
MaxInUse: 325822651
NumAllocs: 10166
MaxAllocSize: 55017727
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-23 16:34:08.076844: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-23 16:34:08.076853: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 8
2022-11-23 16:34:08.076860: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 97
2022-11-23 16:34:08.076866: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 18
2022-11-23 16:34:08.076872: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 1
2022-11-23 16:34:08.076878: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 400, 6
2022-11-23 16:34:08.076885: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 416, 1
2022-11-23 16:34:08.076891: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 512, 7
2022-11-23 16:34:08.076897: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1024, 14
2022-11-23 16:34:08.076903: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-23 16:34:08.076909: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1088, 1
2022-11-23 16:34:08.076915: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1280, 6
2022-11-23 16:34:08.076946: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3328, 6
2022-11-23 16:34:08.076954: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4096, 2
2022-11-23 16:34:08.076960: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7748, 2
2022-11-23 16:34:08.076966: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8192, 2
2022-11-23 16:34:08.076972: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 12252, 1
2022-11-23 16:34:08.076978: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15152, 3
2022-11-23 16:34:08.076984: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15160, 3
2022-11-23 16:34:08.076990: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15336, 3
2022-11-23 16:34:08.076996: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15344, 3
2022-11-23 16:34:08.077003: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15424, 3
2022-11-23 16:34:08.077009: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15488, 3
2022-11-23 16:34:08.077015: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15496, 4
2022-11-23 16:34:08.077021: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15536, 3
2022-11-23 16:34:08.077027: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15568, 3
2022-11-23 16:34:08.077033: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15664, 3
2022-11-23 16:34:08.077039: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15704, 3
2022-11-23 16:34:08.077045: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15808, 3
2022-11-23 16:34:08.077051: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15856, 3
2022-11-23 16:34:08.077057: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 26864, 6
2022-11-23 16:34:08.077063: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 32640, 1
2022-11-23 16:34:08.077069: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 6
2022-11-23 16:34:08.077076: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 131072, 6
2022-11-23 16:34:08.077082: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 196608, 4
2022-11-23 16:34:08.077088: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 262144, 11
2022-11-23 16:34:08.077094: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 278528, 3
2022-11-23 16:34:08.077100: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 294912, 10
2022-11-23 16:34:08.077106: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 362496, 2
2022-11-23 16:34:08.077112: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 409600, 3
2022-11-23 16:34:08.077118: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 786432, 2
2022-11-23 16:34:08.077124: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1572864, 1
2022-11-23 16:34:08.077130: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 2479376, 2
2022-11-23 16:34:08.077136: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3538944, 4
2022-11-23 16:34:08.077142: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 6877184, 10
2022-11-23 16:34:08.077149: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 27508736, 5
2022-11-23 16:34:08.077155: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 55017472, 1
2022-11-23 16:34:08.077185: W tensorflow/core/framework/op_kernel.cc:1745] OP_REQUIRES failed at topk_op.cc:102 : RESOURCE_EXHAUSTED: OOM when allocating tensor with shape[55017727] and type int8 on /job:localhost/replica:0/task:0/device:GPU:0 by allocator gpu_async_0
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
_______________ test_usecase_incremental_training_layer_freezing _______________

tb = <testbook.client.TestbookNotebookClient object at 0x7f9d31be3820>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_incremental_training_layer_freezing(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py:22:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7f9d31be3820>
cell = {'cell_type': 'code', 'execution_count': 8, 'id': '791e06ec-c0cb-4c0f-9e41-7e5c8fa1dc4e', 'metadata': {'execution': {'...: 'model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))\nmodel.fit(day_1, batch_size=1024, epochs=1)'}
cell_index = 13
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': '23f376...e, 'engine': '23f3769a-77e2-438d-947b-7e56e1e9f754', 'started': '2022-11-23T16:34:27.746427Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))
E model.fit(day_1, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [8], line 2�[0m
E �[1;32m 1�[0m model�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39mtf�[38;5;241m.�[39mkeras�[38;5;241m.�[39moptimizers�[38;5;241m.�[39mAdam(learning_rate�[38;5;241m=�[39m�[38;5;241m0.01�[39m))
E �[0;32m----> 2�[0m �[43mmodel�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mday_1�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:910�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 907�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 908�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 910�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 912�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 913�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m~/.local/lib/python3.8/site-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1142�[0m, in �[0;36mModel._maybe_build�[0;34m(self, inputs)�[0m
E �[1;32m 1140�[0m child�[38;5;241m.�[39m_feature_shapes �[38;5;241m=�[39m feature_shapes
E �[1;32m 1141�[0m child�[38;5;241m.�[39m_feature_dtypes �[38;5;241m=�[39m feature_dtypes
E �[0;32m-> 1142�[0m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43m_maybe_build�[49m�[43m(�[49m�[43minputs�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:1160�[0m, in �[0;36mModel.build�[0;34m(self, input_shape)�[0m
E �[1;32m 1158�[0m �[38;5;28;01mfor�[39;00m layer �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mblocks:
E �[1;32m 1159�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m-> 1160�[0m layer�[38;5;241m.�[39mbuild(input_shape)
E �[1;32m 1161�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mTypeError�[39;00m:
E �[1;32m 1162�[0m t, v, tb �[38;5;241m=�[39m sys�[38;5;241m.�[39mexc_info()
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:595�[0m, in �[0;36mParallelBlock.build�[0;34m(self, input_shape)�[0m
E �[1;32m 591�[0m �[38;5;28;01mfor�[39;00m name, layer �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mparallel_dict�[38;5;241m.�[39mitems():
E �[1;32m 592�[0m layer_input_shape �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_filter_layer_inputs_using_schema(
E �[1;32m 593�[0m name, layer, input_shape
E �[1;32m 594�[0m )
E �[0;32m--> 595�[0m �[43mlayer�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43mlayer_input_shape�[49m�[43m)�[49m
E �[1;32m 596�[0m layer_out_shape �[38;5;241m=�[39m layer�[38;5;241m.�[39mcompute_output_shape(layer_input_shape)
E �[1;32m 597�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mautomatic_pruning �[38;5;129;01mand�[39;00m layer_out_shape �[38;5;241m==�[39m {}:
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:110�[0m, in �[0;36mModelBlock.build�[0;34m(self, input_shapes)�[0m
E �[1;32m 109�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mbuild�[39m(�[38;5;28mself�[39m, input_shapes):
E �[0;32m--> 110�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mblock�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43minput_shapes�[49m�[43m)�[49m
E �[1;32m 112�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mhasattr�[39m(�[38;5;28mself�[39m�[38;5;241m.�[39mbuild, �[38;5;124m"�[39m�[38;5;124m_is_default�[39m�[38;5;124m"�[39m):
E �[1;32m 113�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_build_input_shape �[38;5;241m=�[39m input_shapes
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:129�[0m, in �[0;36mSequentialBlock.build�[0;34m(self, input_shape)�[0m
E �[1;32m 121�[0m �[38;5;124;03m"""Builds the sequential block�[39;00m
E �[1;32m 122�[0m
E �[1;32m 123�[0m �[38;5;124;03mParameters�[39;00m
E �[0;32m (...)�[0m
E �[1;32m 126�[0m �[38;5;124;03m The input shape, by default None�[39;00m
E �[1;32m 127�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 128�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_propagate_context(input_shape)
E �[0;32m--> 129�[0m �[43mbuild_sequentially�[49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[43m,�[49m�[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mlayers�[49m�[43m,�[49m�[43m �[49m�[43minput_shape�[49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:846�[0m, in �[0;36mbuild_sequentially�[0;34m(self, layers, input_shape)�[0m
E �[1;32m 844�[0m �[38;5;28;01mfor�[39;00m layer �[38;5;129;01min�[39;00m layers:
E �[1;32m 845�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 846�[0m layer�[38;5;241m.�[39mbuild(input_shape)
E �[1;32m 847�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mTypeError�[39;00m:
E �[1;32m 848�[0m t, v, tb �[38;5;241m=�[39m sys�[38;5;241m.�[39mexc_info()
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:595�[0m, in �[0;36mParallelBlock.build�[0;34m(self, input_shape)�[0m
E �[1;32m 591�[0m �[38;5;28;01mfor�[39;00m name, layer �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mparallel_dict�[38;5;241m.�[39mitems():
E �[1;32m 592�[0m layer_input_shape �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_filter_layer_inputs_using_schema(
E �[1;32m 593�[0m name, layer, input_shape
E �[1;32m 594�[0m )
E �[0;32m--> 595�[0m �[43mlayer�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43mlayer_input_shape�[49m�[43m)�[49m
E �[1;32m 596�[0m layer_out_shape �[38;5;241m=�[39m layer�[38;5;241m.�[39mcompute_output_shape(layer_input_shape)
E �[1;32m 597�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mautomatic_pruning �[38;5;129;01mand�[39;00m layer_out_shape �[38;5;241m==�[39m {}:
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/core/combinators.py:595�[0m, in �[0;36mParallelBlock.build�[0;34m(self, input_shape)�[0m
E �[1;32m 591�[0m �[38;5;28;01mfor�[39;00m name, layer �[38;5;129;01min�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mparallel_dict�[38;5;241m.�[39mitems():
E �[1;32m 592�[0m layer_input_shape �[38;5;241m=�[39m �[38;5;28mself�[39m�[38;5;241m.�[39m_maybe_filter_layer_inputs_using_schema(
E �[1;32m 593�[0m name, layer, input_shape
E �[1;32m 594�[0m )
E �[0;32m--> 595�[0m �[43mlayer�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43mlayer_input_shape�[49m�[43m)�[49m
E �[1;32m 596�[0m layer_out_shape �[38;5;241m=�[39m layer�[38;5;241m.�[39mcompute_output_shape(layer_input_shape)
E �[1;32m 597�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mautomatic_pruning �[38;5;129;01mand�[39;00m layer_out_shape �[38;5;241m==�[39m {}:
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:364�[0m, in �[0;36mEmbeddingTable.build�[0;34m(self, input_shapes)�[0m
E �[1;32m 362�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mbuild�[39m(�[38;5;28mself�[39m, input_shapes):
E �[1;32m 363�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtable�[38;5;241m.�[39mbuilt:
E �[0;32m--> 364�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mtable�[49m�[38;5;241;43m.�[39;49m�[43mbuild�[49m�[43m(�[49m�[43minput_shapes�[49m�[43m)�[49m
E �[1;32m 365�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28msuper�[39m(EmbeddingTable, �[38;5;28mself�[39m)�[38;5;241m.�[39mbuild(input_shapes)
E
E �[0;31mResourceExhaustedError�[0m: failed to allocate memory [Op:Mul]
E ResourceExhaustedError: failed to allocate memory [Op:Mul]

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-23 16:34:20.645206: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-11-23 16:34:24.880703: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-11-23 16:34:24.880809: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 8139 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-11-23 16:34:24.881687: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-11-23 16:34:24.881741: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13851 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-11-23 16:34:24.882368: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 2
2022-11-23 16:34:24.882419: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13851 MB memory: -> device: 2, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0e:00.0, compute capability: 6.0
2022-11-23 16:34:24.883048: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 3
2022-11-23 16:34:24.883098: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:3 with 13849 MB memory: -> device: 3, name: Tesla P100-DGXS-16GB, pci bus id: 0000:0f:00.0, compute capability: 6.0
2022-11-23 16:34:28.272826: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 6881280/17069309952
2022-11-23 16:34:28.272878: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 8534360064
InUse: 1362837605
MaxInUse: 1362837605
NumAllocs: 100
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-11-23 16:34:28.272891: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-11-23 16:34:28.272900: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 1
2022-11-23 16:34:28.272906: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 16
2022-11-23 16:34:28.272912: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 2
2022-11-23 16:34:28.272917: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 2
2022-11-23 16:34:28.272923: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 2
2022-11-23 16:34:28.272929: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 1
2022-11-23 16:34:28.272934: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 1
2022-11-23 16:34:28.272940: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 1
2022-11-23 16:34:28.272946: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-11-23 16:34:28.272951: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 1
2022-11-23 16:34:28.272957: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 60720, 1
2022-11-23 16:34:28.272963: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 1
2022-11-23 16:34:28.272992: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 1
2022-11-23 16:34:28.272999: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 1
2022-11-23 16:34:28.273005: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 1
2022-11-23 16:34:28.273011: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 1
2022-11-23 16:34:28.273016: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 1
2022-11-23 16:34:28.273022: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 1
2022-11-23 16:34:28.273028: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 1
2022-11-23 16:34:28.273033: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 1
2022-11-23 16:34:28.273039: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 1
2022-11-23 16:34:28.273071: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_file2lg69bc4.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 52 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 64 20 69%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 102 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11587 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 2 failed, 871 passed, 13 skipped, 1460 warnings in 1863.66s (0:31:03) =====
/usr/local/lib/python3.8/dist-packages/coverage/data.py:130: CoverageWarning: Data file '/var/jenkins_home/workspace/merlin_models/models/.coverage.10.20.17.231.19463.804813' doesn't seem to be a coverage data file: cannot unpack non-iterable NoneType object
data._warn(str(exc))
ERROR: InvocationError for command /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: py38-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins3098769999297859636.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit edb7f9ca77ed37bcc236b2ccf41793daa9a9de46, no merge conflicts.
Running as SYSTEM
Setting status of edb7f9ca77ed37bcc236b2ccf41793daa9a9de46 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1947/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse edb7f9ca77ed37bcc236b2ccf41793daa9a9de46^{commit} # timeout=10
Checking out Revision edb7f9ca77ed37bcc236b2ccf41793daa9a9de46 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f edb7f9ca77ed37bcc236b2ccf41793daa9a9de46 # timeout=10
Commit message: "Merge branch 'main' into session_based"
 > git rev-list --no-walk 89869a3ee4aa2ebd1e5781194aaff1f001aaf341 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins15922620596059607354.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+82.gedb7f9ca.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.15,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.15,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==6.0.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+82.gedb7f9ca,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==3.0.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='3283035622'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-ux_cyed2
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-ux_cyed2
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 78f1f0b0952fd14b76913b0dd258565c06694abe
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (0.55.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.3.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (7.0.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.2.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.5.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (21.3)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (4.64.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.0.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (3.1.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (8.1.3)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.4)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.4.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+13.g78f1f0b) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+13.g78f1f0b-py3-none-any.whl size=118889 sha256=caa6867d4333fb5d03acb5dd59454c8aa209c15b2940a7712a1543176f915f65
  Stored in directory: /tmp/pip-ephem-wheel-cache-vtukby5p/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+13.g78f1f0b
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-9np92ym3
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-9np92ym3
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ff186c6fac1bca957d4edd76e8e81c77ca6a649e
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.3.tar.gz (48 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.3/48.3 kB 55.7 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+10.gff186c6f) (0.9.0+13.g78f1f0b)
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+10.gff186c6f) (1.8.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.3.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.55.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.3.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (7.0.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.19.5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.5.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (21.3)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.64.1)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.3.0)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+10.gff186c6f) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.2)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.0.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.1.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (8.1.3)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.0.4)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.4.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.0.0)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+10.gff186c6f-cp38-cp38-linux_x86_64.whl size=257603 sha256=7683522da43d107a31ce6fdb99c35b7a72bbc06c26d87766df44ddd9eda99fc4
  Stored in directory: /tmp/pip-ephem-wheel-cache-uyknugeu/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.3-py3-none-any.whl size=37647 sha256=3fe0dd0aa1653e7df07cd91e3b2722257c90e8f16f28665a184c805309969e30
  Stored in directory: /tmp/pip-ephem-wheel-cache-uyknugeu/wheels/1c/a3/4a/0feebb30e0c8cb7ba7046544390b43c7017a2195232f5305a1
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.3 nvtabular-1.6.0+10.gff186c6f
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filedvk4xmh5.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 64 20 69%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11587 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
========= 873 passed, 13 skipped, 1460 warnings in 1812.97s (0:30:12) ==========
___________________________________ summary ____________________________________
py38-gpu: commands succeeded
congratulations :)
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins148400977272062921.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit 386675cc0354221b930395ec948d24bfc00b9627, no merge conflicts.
Running as SYSTEM
Setting status of 386675cc0354221b930395ec948d24bfc00b9627 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1948/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse 386675cc0354221b930395ec948d24bfc00b9627^{commit} # timeout=10
Checking out Revision 386675cc0354221b930395ec948d24bfc00b9627 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 386675cc0354221b930395ec948d24bfc00b9627 # timeout=10
Commit message: "modify unit test"
 > git rev-list --no-walk edb7f9ca77ed37bcc236b2ccf41793daa9a9de46 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins6060359792095089393.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+83.g386675cc.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.15,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.15,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==6.0.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+83.g386675cc,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==3.0.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='2438111435'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-1mywe4s5
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-1mywe4s5
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 78f1f0b0952fd14b76913b0dd258565c06694abe
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (21.3)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (4.64.1)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.2.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (3.19.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (7.0.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.10.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.3.5)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.12.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (6.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (3.1.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (8.1.3)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.0.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.8.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+13.g78f1f0b) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+13.g78f1f0b-py3-none-any.whl size=118889 sha256=425d676f7e96344a4fed8a55e43b5ab13f662818f1768bba35a91cd1cea7b644
  Stored in directory: /tmp/pip-ephem-wheel-cache-pm5ozvlr/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+13.g78f1f0b
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-qka61r03
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-qka61r03
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ff186c6fac1bca957d4edd76e8e81c77ca6a649e
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.3.tar.gz (48 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.3/48.3 kB 1.7 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+10.gff186c6f) (1.8.1)
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+10.gff186c6f) (0.9.0+13.g78f1f0b)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (21.3)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.64.1)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.5)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.19.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (7.0.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.10.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.3.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+10.gff186c6f) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.12.0)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.1.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (8.1.3)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.0.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (5.8.0)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.0.1)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+10.gff186c6f-cp38-cp38-linux_x86_64.whl size=257603 sha256=145e6067571b43b46417b46401fe9b30085f86b384c68f32a97558c57b15f6ae
  Stored in directory: /tmp/pip-ephem-wheel-cache-qdawu5by/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.3-py3-none-any.whl size=37647 sha256=b27ded66b71c4cb806ac9cbfd28c51d508a6db5d8e86e16bb072a01e370f07a6
  Stored in directory: /tmp/pip-ephem-wheel-cache-qdawu5by/wheels/1c/a3/4a/0feebb30e0c8cb7ba7046544390b43c7017a2195232f5305a1
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.3 nvtabular-1.6.0+10.gff186c6f
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_filezi3067um.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 64 20 69%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11587 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
========= 873 passed, 13 skipped, 1460 warnings in 1828.68s (0:30:28) ==========
___________________________________ summary ____________________________________
py38-gpu: commands succeeded
congratulations :)
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins3881583830834184228.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #849 of commit f81fb5eb794ae6fcf58ee258460a9ba30995886a, no merge conflicts.
Running as SYSTEM
Setting status of f81fb5eb794ae6fcf58ee258460a9ba30995886a to PENDING with url http://merlin-infra1.nvidia.com:8080/job/merlin_models/1949/ and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/849/*:refs/remotes/origin/pr/849/* # timeout=10
 > git rev-parse f81fb5eb794ae6fcf58ee258460a9ba30995886a^{commit} # timeout=10
Checking out Revision f81fb5eb794ae6fcf58ee258460a9ba30995886a (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f f81fb5eb794ae6fcf58ee258460a9ba30995886a # timeout=10
Commit message: "Merge branch 'session_based' of https://github.com/NVIDIA-Merlin/Models into HEAD"
 > git rev-list --no-walk 386675cc0354221b930395ec948d24bfc00b9627 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins1815345078322023215.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: traitlets>=5.2.2 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (5.4.0)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
GLOB sdist-make: /var/jenkins_home/workspace/merlin_models/models/setup.py
py38-gpu recreate: /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
py38-gpu installdeps: -rrequirements/dev.txt, tensorflow<2.10
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu inst: /var/jenkins_home/workspace/merlin_models/models/.tox/.tmp/package/4/merlin-models-0.9.0+85.gf81fb5eb.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
py38-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,appdirs==1.4.4,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.15,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==20.8b1,bleach==5.0.1,bokeh==3.0.2,boto3==1.24.75,botocore==1.29.15,Brotli==1.0.9,build==0.9.0,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,check-manifest==0.48,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flake8==6.0.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,interrogate==1.5.0,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,isort==5.10.1,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter==1.0.0,jupyter-cache==0.4.3,jupyter-console==6.4.4,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mccabe==0.7.0,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-models==0.9.0+85.gf81fb5eb,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy==0.991,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,# Editable install with no version control (nvtabular==1.4.0+8.g95e12d347),-e /usr/local/lib/python3.8/dist-packages,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathspec==0.10.2,pathtools==0.1.2,pbr==5.11.0,pep517==0.13.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycodestyle==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,pyflakes==3.0.0,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,qtconsole==5.4.0,QtPy==2.3.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typed-ast==1.5.4,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,xyzservices==2022.9.0,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
py38-gpu run-test-pre: PYTHONHASHSEED='438568485'
py38-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-l9paenpo
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-l9paenpo
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 78f1f0b0952fd14b76913b0dd258565c06694abe
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (7.0.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (4.64.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (21.3)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.5.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.10.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.3.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (3.19.5)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.12.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.4.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.0.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.4)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.7.0)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+13.g78f1f0b) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+13.g78f1f0b-py3-none-any.whl size=118889 sha256=b44c416bda0a8148af8290067d44caf3e0b3e374e9fc795eb93f3dcd57d5c0ad
  Stored in directory: /tmp/pip-ephem-wheel-cache-zd4v0kog/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+13.g78f1f0b
py38-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/nvtabular.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/nvtabular.git
  Cloning https://github.com/NVIDIA-Merlin/nvtabular.git to /tmp/pip-req-build-ce0wocvc
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/nvtabular.git /tmp/pip-req-build-ce0wocvc
  Resolved https://github.com/NVIDIA-Merlin/nvtabular.git to commit ff186c6fac1bca957d4edd76e8e81c77ca6a649e
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from nvtabular==1.6.0+10.gff186c6f) (0.9.0+13.g78f1f0b)
Collecting merlin-dataloader>=0.0.2
  Downloading merlin-dataloader-0.0.3.tar.gz (48 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.3/48.3 kB 1.6 MB/s eta 0:00:00
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: scipy in /usr/local/lib/python3.8/dist-packages (from nvtabular==1.6.0+10.gff186c6f) (1.8.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (7.0.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.64.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (21.3)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.5.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.10.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.3.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.3.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.19.5)
Requirement already satisfied: numpy<1.25.0,>=1.17.3 in /var/jenkins_home/.local/lib/python3.8/site-packages (from scipy->nvtabular==1.6.0+10.gff186c6f) (1.20.3)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.12.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.4.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.0.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.1.2)
Requirement already satisfied: tornado>=6.0.3 in ./.tox/py38-gpu/lib/python3.8/site-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.0.4)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.7.0)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/py38-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in ./.tox/py38-gpu/lib/python3.8/site-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (2.0.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->nvtabular==1.6.0+10.gff186c6f) (4.0.0)
Building wheels for collected packages: nvtabular, merlin-dataloader
  Building wheel for nvtabular (pyproject.toml): started
  Building wheel for nvtabular (pyproject.toml): finished with status 'done'
  Created wheel for nvtabular: filename=nvtabular-1.6.0+10.gff186c6f-cp38-cp38-linux_x86_64.whl size=257603 sha256=c437ee01dae03fdac67666dc49afd7a61a4315349a6e68599136b0c6ef5c2481
  Stored in directory: /tmp/pip-ephem-wheel-cache-h5jp2rtf/wheels/8f/d9/f9/30f2cdc5bf8787fae6fdfe55afd6e1b493e619ec32c32ec40b
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.3-py3-none-any.whl size=37647 sha256=baf459b910a2caf8940031414ee55588b5f63508826308a8b3c07017fda175e8
  Stored in directory: /tmp/pip-ephem-wheel-cache-h5jp2rtf/wheels/1c/a3/4a/0feebb30e0c8cb7ba7046544390b43c7017a2195232f5305a1
Successfully built nvtabular merlin-dataloader
Installing collected packages: merlin-dataloader, nvtabular
  Attempting uninstall: nvtabular
    Found existing installation: nvtabular 1.1.1
    Not uninstalling nvtabular at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu
    Can't uninstall 'nvtabular'. No files were found to uninstall.
Successfully installed merlin-dataloader-0.0.3 nvtabular-1.6.0+10.gff186c6f
py38-gpu run-test: commands[2] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/py38-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 886 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss.s [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py .......... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 7%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 8%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ....................................... [ 13%]
............................ [ 16%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 20%]
..................... [ 22%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 22%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 23%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 24%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 24%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 24%]
tests/unit/tf/core/test_aggregation.py ......... [ 25%]
tests/unit/tf/core/test_base.py .. [ 25%]
tests/unit/tf/core/test_combinators.py s..................... [ 28%]
tests/unit/tf/core/test_encoder.py .. [ 28%]
tests/unit/tf/core/test_index.py ... [ 29%]
tests/unit/tf/core/test_prediction.py .. [ 29%]
tests/unit/tf/core/test_tabular.py ...... [ 29%]
tests/unit/tf/examples/test_01_getting_started.py . [ 30%]
tests/unit/tf/examples/test_02_dataschema.py . [ 30%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 30%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 30%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 30%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 30%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 30%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 30%]
[ 30%]
tests/unit/tf/examples/test_usecase_data_parallel.py . [ 30%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 31%]
tests/unit/tf/examples/test_usecase_incremental_training_layer_freezing.py . [ 31%]
[ 31%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 31%]
tests/unit/tf/examples/test_usecase_retrieval_with_hpo.py . [ 31%]
tests/unit/tf/examples/test_usecase_transformers_next_item_prediction.py . [ 31%]
[ 31%]
tests/unit/tf/horovod/test_horovod.py ... [ 31%]
tests/unit/tf/inputs/test_base.py . [ 31%]
tests/unit/tf/inputs/test_continuous.py ........ [ 32%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 36%]
........ [ 37%]
tests/unit/tf/inputs/test_tabular.py .................. [ 39%]
tests/unit/tf/layers/test_queue.py .............. [ 41%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 44%]
tests/unit/tf/metrics/test_metrics_topk.py ......................... [ 47%]
tests/unit/tf/models/test_base.py s......................... [ 50%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................. [ 57%]
............................................. [ 62%]
tests/unit/tf/outputs/test_base.py ...... [ 63%]
tests/unit/tf/outputs/test_classification.py ...... [ 64%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 65%]
tests/unit/tf/outputs/test_regression.py .. [ 66%]
tests/unit/tf/outputs/test_sampling.py .... [ 66%]
tests/unit/tf/outputs/test_topk.py . [ 66%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 66%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 68%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 69%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 69%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 70%]
tests/unit/tf/transformers/test_block.py ...................... [ 73%]
tests/unit/tf/transformers/test_transforms.py .......... [ 74%]
tests/unit/tf/transforms/test_bias.py .. [ 74%]
tests/unit/tf/transforms/test_features.py s............................. [ 77%]
.......................s...... [ 81%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 82%]
tests/unit/tf/transforms/test_noise.py ..... [ 82%]
tests/unit/tf/transforms/test_sequence.py .................... [ 84%]
tests/unit/tf/transforms/test_tensor.py ... [ 85%]
tests/unit/tf/utils/test_batch.py .... [ 85%]
tests/unit/tf/utils/test_dataset.py .. [ 86%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 86%]
tests/unit/torch/test_dataset.py ......... [ 87%]
tests/unit/torch/test_public_api.py . [ 87%]
tests/unit/torch/block/test_base.py .... [ 88%]
tests/unit/torch/block/test_mlp.py . [ 88%]
tests/unit/torch/features/test_continuous.py .. [ 88%]
tests/unit/torch/features/test_embedding.py .............. [ 90%]
tests/unit/torch/features/test_tabular.py .... [ 90%]
tests/unit/torch/model/test_head.py ............ [ 91%]
tests/unit/torch/model/test_model.py .. [ 92%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 93%]
tests/unit/torch/tabular/test_tabular.py ... [ 93%]
tests/unit/torch/tabular/test_transformations.py ....... [ 94%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../.local/lib/python3.8/site-packages/flatbuffers/compat.py:19
/var/jenkins_home/.local/lib/python3.8/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
import imp

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 10 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 6 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 123 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 16 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 3 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 9 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 60 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_base.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 7 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 28 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 89 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 10 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 1 warning
tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/horovod/test_horovod.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 10 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:970: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/horovod/test_horovod.py: 3 warnings
tests/unit/tf/models/test_retrieval.py: 63 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_fileaao2_a50.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:602: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_encoder.py: 1 warning
tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 30 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/var/jenkins_home/.local/lib/python3.8/site-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_v2_export_embeddings
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[True]
tests/unit/tf/models/test_retrieval.py::test_youtube_dnn_topk_evaluation[False]
tests/unit/tf/transformers/test_block.py::test_retrieval_transformer[True]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:298: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/var/jenkins_home/.local/lib/python3.8/site-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:344: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/var/jenkins_home/workspace/merlin_models/models/.tox/py38-gpu/lib/python3.8/site-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/datasets/init.py 2 0 100%
merlin/datasets/advertising/init.py 2 0 100%
merlin/datasets/advertising/criteo/init.py 0 0 100%
merlin/datasets/advertising/criteo/dataset.py 79 49 38%
merlin/datasets/advertising/criteo/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/init.py 4 0 100%
merlin/datasets/ecommerce/aliccp/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/dataset.py 141 87 38%
merlin/datasets/ecommerce/aliccp/raw/init.py 0 0 100%
merlin/datasets/ecommerce/aliccp/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/booking/init.py 0 0 100%
merlin/datasets/ecommerce/booking/dataset.py 127 100 21%
merlin/datasets/ecommerce/booking/raw/init.py 0 0 100%
merlin/datasets/ecommerce/booking/transformed/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/init.py 0 0 100%
merlin/datasets/ecommerce/dressipi/dataset.py 45 37 18%
merlin/datasets/ecommerce/dressipi/preprocessed/init.py 0 0 100%
merlin/datasets/ecommerce/large/init.py 0 0 100%
merlin/datasets/ecommerce/small/init.py 0 0 100%
merlin/datasets/ecommerce/transactions/init.py 0 0 100%
merlin/datasets/entertainment/init.py 2 0 100%
merlin/datasets/entertainment/movielens/1m-raw/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m-raw/ratings/init.py 0 0 100%
merlin/datasets/entertainment/movielens/1m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/25m/init.py 0 0 100%
merlin/datasets/entertainment/movielens/100k/init.py 0 0 100%
merlin/datasets/entertainment/movielens/init.py 0 0 100%
merlin/datasets/entertainment/movielens/dataset.py 152 122 20%
merlin/datasets/entertainment/music_streaming/init.py 0 0 100%
merlin/datasets/social/init.py 0 0 100%
merlin/datasets/synthetic.py 147 8 95%
merlin/datasets/testing/init.py 0 0 100%
merlin/datasets/testing/sequence_testing/init.py 0 0 100%
merlin/models/init.py 2 0 100%
merlin/models/_version.py 354 205 42%
merlin/models/api.py 14 5 64%
merlin/models/config/init.py 0 0 100%
merlin/models/config/schema.py 62 0 100%
merlin/models/implicit/init.py 27 4 85%
merlin/models/io.py 15 0 100%
merlin/models/lightfm/init.py 23 0 100%
merlin/models/loader/init.py 0 0 100%
merlin/models/loader/backend.py 379 41 89%
merlin/models/loader/dataframe_iter.py 21 17 19%
merlin/models/loader/tf_utils.py 57 27 53%
merlin/models/loader/utils.py 40 15 62%
merlin/models/tf/init.py 70 0 100%
merlin/models/tf/blocks/init.py 0 0 100%
merlin/models/tf/blocks/cross.py 44 0 100%
merlin/models/tf/blocks/dlrm.py 49 2 96%
merlin/models/tf/blocks/experts.py 99 17 83%
merlin/models/tf/blocks/interaction.py 108 40 63%
merlin/models/tf/blocks/mlp.py 117 7 94%
merlin/models/tf/blocks/optimizer.py 173 12 93%
merlin/models/tf/blocks/retrieval/init.py 0 0 100%
merlin/models/tf/blocks/retrieval/base.py 175 62 65%
merlin/models/tf/blocks/retrieval/matrix_factorization.py 35 1 97%
merlin/models/tf/blocks/retrieval/two_tower.py 30 0 100%
merlin/models/tf/blocks/sampling/init.py 0 0 100%
merlin/models/tf/blocks/sampling/base.py 29 2 93%
merlin/models/tf/blocks/sampling/cross_batch.py 46 2 96%
merlin/models/tf/blocks/sampling/in_batch.py 35 0 100%
merlin/models/tf/blocks/sampling/queue.py 115 12 90%
merlin/models/tf/core/init.py 0 0 100%
merlin/models/tf/core/aggregation.py 241 45 81%
merlin/models/tf/core/base.py 242 51 79%
merlin/models/tf/core/combinators.py 426 53 88%
merlin/models/tf/core/encoder.py 175 28 84%
merlin/models/tf/core/index.py 106 16 85%
merlin/models/tf/core/prediction.py 50 1 98%
merlin/models/tf/core/tabular.py 280 29 90%
merlin/models/tf/distributed/init.py 0 0 100%
merlin/models/tf/distributed/backend.py 9 2 78%
merlin/models/tf/inputs/init.py 0 0 100%
merlin/models/tf/inputs/base.py 64 20 69%
merlin/models/tf/inputs/continuous.py 39 3 92%
merlin/models/tf/inputs/embedding.py 458 51 89%
merlin/models/tf/loader.py 268 94 65%
merlin/models/tf/losses/init.py 4 0 100%
merlin/models/tf/losses/base.py 9 0 100%
merlin/models/tf/losses/listwise.py 13 0 100%
merlin/models/tf/losses/pairwise.py 115 1 99%
merlin/models/tf/metrics/init.py 2 0 100%
merlin/models/tf/metrics/evaluation.py 105 48 54%
merlin/models/tf/metrics/topk.py 198 48 76%
merlin/models/tf/models/init.py 0 0 100%
merlin/models/tf/models/base.py 758 101 87%
merlin/models/tf/models/benchmark.py 16 0 100%
merlin/models/tf/models/ranking.py 67 3 96%
merlin/models/tf/models/retrieval.py 78 4 95%
merlin/models/tf/models/utils.py 10 1 90%
merlin/models/tf/outputs/init.py 0 0 100%
merlin/models/tf/outputs/base.py 123 17 86%
merlin/models/tf/outputs/classification.py 91 1 99%
merlin/models/tf/outputs/contrastive.py 147 10 93%
merlin/models/tf/outputs/regression.py 9 0 100%
merlin/models/tf/outputs/sampling/init.py 0 0 100%
merlin/models/tf/outputs/sampling/base.py 78 21 73%
merlin/models/tf/outputs/sampling/in_batch.py 37 1 97%
merlin/models/tf/outputs/sampling/popularity.py 27 1 96%
merlin/models/tf/outputs/topk.py 98 6 94%
merlin/models/tf/prediction_tasks/init.py 0 0 100%
merlin/models/tf/prediction_tasks/base.py 207 37 82%
merlin/models/tf/prediction_tasks/classification.py 68 17 75%
merlin/models/tf/prediction_tasks/multi.py 7 0 100%
merlin/models/tf/prediction_tasks/next_item.py 59 17 71%
merlin/models/tf/prediction_tasks/regression.py 35 2 94%
merlin/models/tf/prediction_tasks/retrieval.py 73 3 96%
merlin/models/tf/transformers/init.py 0 0 100%
merlin/models/tf/transformers/block.py 101 2 98%
merlin/models/tf/transformers/transforms.py 63 0 100%
merlin/models/tf/transforms/init.py 0 0 100%
merlin/models/tf/transforms/bias.py 111 9 92%
merlin/models/tf/transforms/features.py 435 42 90%
merlin/models/tf/transforms/negative_sampling.py 77 3 96%
merlin/models/tf/transforms/noise.py 43 1 98%
merlin/models/tf/transforms/regularization.py 17 1 94%
merlin/models/tf/transforms/sequence.py 282 42 85%
merlin/models/tf/transforms/tensor.py 158 13 92%
merlin/models/tf/typing.py 7 0 100%
merlin/models/tf/utils/init.py 0 0 100%
merlin/models/tf/utils/batch_utils.py 85 4 95%
merlin/models/tf/utils/repr_utils.py 69 4 94%
merlin/models/tf/utils/search_utils.py 34 22 35%
merlin/models/tf/utils/testing_utils.py 206 36 83%
merlin/models/tf/utils/tf_utils.py 209 43 79%
merlin/models/torch/init.py 12 0 100%
merlin/models/torch/block/init.py 0 0 100%
merlin/models/torch/block/base.py 167 32 81%
merlin/models/torch/block/mlp.py 38 5 87%
merlin/models/torch/dataset.py 68 5 93%
merlin/models/torch/features/init.py 0 0 100%
merlin/models/torch/features/base.py 4 0 100%
merlin/models/torch/features/continuous.py 22 0 100%
merlin/models/torch/features/embedding.py 165 12 93%
merlin/models/torch/features/tabular.py 65 8 88%
merlin/models/torch/losses.py 28 28 0%
merlin/models/torch/model/init.py 0 0 100%
merlin/models/torch/model/base.py 286 65 77%
merlin/models/torch/model/prediction_task.py 24 0 100%
merlin/models/torch/tabular/init.py 0 0 100%
merlin/models/torch/tabular/aggregation.py 75 0 100%
merlin/models/torch/tabular/base.py 247 39 84%
merlin/models/torch/tabular/transformations.py 67 3 96%
merlin/models/torch/typing.py 6 0 100%
merlin/models/torch/utils/init.py 0 0 100%
merlin/models/torch/utils/data_utils.py 117 117 0%
merlin/models/torch/utils/examples_utils.py 39 39 0%
merlin/models/torch/utils/torch_utils.py 80 22 72%
merlin/models/utils/init.py 0 0 100%
merlin/models/utils/constants.py 3 0 100%
merlin/models/utils/dataset.py 38 4 89%
merlin/models/utils/dependencies.py 26 19 27%
merlin/models/utils/doc_utils.py 10 0 100%
merlin/models/utils/example_utils.py 31 2 94%
merlin/models/utils/misc_utils.py 118 90 24%
merlin/models/utils/nvt_utils.py 27 24 11%
merlin/models/utils/registry.py 101 29 71%
merlin/models/utils/schema_utils.py 90 19 79%
merlin/models/xgb/init.py 124 4 97%

TOTAL 11587 2394 79%

=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:64: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:80: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:94: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:115: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../.local/lib/python3.8/site-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
========= 873 passed, 13 skipped, 1460 warnings in 1834.08s (0:30:34) ==========
___________________________________ summary ____________________________________
py38-gpu: commands succeeded
congratulations :)
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins10851340946100971131.sh

@rnyak rnyak merged commit 0352a2d into main Nov 24, 2022
@rnyak rnyak deleted the session_based branch November 24, 2022 00:48
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants