Skip to content

LAFS: Landmark-based Facial Self-supervised Learning for Face Recognition

Notifications You must be signed in to change notification settings

MrChenFeng/LAFS_CVPR2024

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 

Repository files navigation

LAFS: Landmark-based Facial Self-supervised Learning for Face Recognition

This is the official PyTorch implementation of CVPR 2024 paper (LAFS: Landmark-based Facial Self-supervised Learning for Face Recognition).

Abstract

In this work we focus on learning facial representations that can be adapted to train effective face recognition models, particularly in the absence of labels. Firstly, compared with existing labelled face datasets, a vastly larger magnitude of unlabeled faces exists in the real world. We explore the learning strategy of these unlabeled facial images through self-supervised pretraining to transfer generalized face recognition performance. Moreover, motivated by one recent finding, that is, the face saliency area is critical for face recognition, in contrast to utilizing random cropped blocks of images for constructing augmentations in pretraining, we utilize patches localized by extracted facial landmarks. This enables our method - namely \textbf{LA}ndmark-based \textbf{F}acial \textbf{S}elf-supervised learning~(\textbf{LAFS}), to learn key representation that is more critical for face recognition. We also incorporate two landmark-specific augmentations which introduce more diversity of landmark information to further regularize the learning. With learned landmark-based facial representations, we further adapt the representation for face recognition with regularization mitigating variations in landmark positions. Our method achieves significant improvement over the state-of-the-art on multiple face recognition benchmarks, especially on more challenging few-shot scenarios.

@InProceedings{Sun_2024_CVPR,
    author    = {Sun, Zhonglin and Feng, Chen and Patras, Ioannis and Tzimiropoulos, Georgios},
    title     = {LAFS: Landmark-based Facial Self-supervised Learning for Face Recognition},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2024}
}

Please consider cite our paper and star the repo if you find this repo useful.

Usage

Please stay tuned for more updates regarding the camera-ready version and code.

License

This project is licensed under the terms of the MIT license.

About

LAFS: Landmark-based Facial Self-supervised Learning for Face Recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published