Skip to content

MikeChenfu/Supervised-learning

Repository files navigation

Census-Income-Classification

  1. This is a classification model to predict whether a person have more than 50,000 dollars salary.

    Setup: python3.6 pandas numpy sklearn

    (1)training process Usage: python train_classify.py -i -c -f <selection_model> -o

     Example:
         python train_classify.py -i data/census-income.data  -c boot -f forest -o forest_model.sav
    
     Options:
         -i: input file 
         -c: classifier methods: kfold or boot
         -f: classification model: logistic, forest, boosting
         -o: output file of training model
    

    (2) prediction process

     Usage:
         python predict_classify.py -i <inputfile> -m <model file> 
    
     Example:
         python predict_classify.py -i data/classification-test.data -m forest_model.sav 
    
     Options:
         -i: input file 
         -m: model file
    
  2. This is a selection method for significant features. Setup: python3.6 pandas numpy sklearn

    Usage: python feature_FSS.py -i -f <feature_selection_model>

    Example: python feature_FSS.py -i data/census-income.data -f forest

    Options: -i: input file -f: feature selection model: forward, forest, boosting

  3. This is a segementation model to create data segments.

    Setup: python3.6 pandas numpy sklearn

    (1) training process

     Usage:
         python train_seg.py -i <inputfile> -cluster <segementation_model> -n <number of clusters> -o <model output>
    
     Example:
         python train_seg.py -i data/census-income.data -cluster KNN -n 10 -o seg_model.sav
    
     Options:
         -i: input file 
         -cluster: segementation model: KNN or GMM
         -o: output file of training model
    

    (2) prediction process

     Usage:
         python predict_seg.py -i <inputfile> -m <model file> 
     
     Example:
         python predict_seg.py -i data/segmentation-test.data -m seg_model.sav
    
     Options:
         -i: input file 
         -m: model file
    
  4. Generating feature histogram for analysis Usage: python features_analysis.py -i -o

    Example: python features_analysis.py -i data/census-income.data -o features_analysis.txt

    Options: -i: input file -o: output file

About

Income Prediction using U.S. Census Bureau Dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages