Skip to content

课堂专注度及考试作弊系统、课堂动态点名。情绪识别、表情识别、姿态识别和人脸识别结合

Notifications You must be signed in to change notification settings

MicroEngine/smart_classroom

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

智慧教室

课堂专注度及考试作弊系统、课堂动态点名,情绪识别、表情识别和人脸识别结合

相关项目

课堂专注度分析

课堂专注度+表情识别

正面专注度

作弊检测

关键点计算方法

转头(probe)+低头(peep)+传递物品(passing)

正面作弊动作

侧面的传递物品识别

侧面作弊动作

逻辑回归关键点

image-20210620223428871

下载权重

1. Halpe dataset (136 keypoints)

Model Backbone Detector Input Size AP Speed Download Config Training Log
Fast Pose ResNet50 YOLOv3 256x192 69.0 3.54 iter/s Google Baidu cfg log
  • 放到detection_system/checkpoints

2. Human-ReID based tracking (Recommended)

Currently the best performance tracking model. Paper coming soon.

Getting started

Download human reid model and place it into AlphaPose/trackers/weights/.

Then simply run alphapose with additional flag --pose_track

You can try different person reid model by modifing cfg.arch and cfg.loadmodel in ./trackers/tracker_cfg.py.

If you want to train your own reid model, please refer to this project

3. Yolo Detector

Download the object detection model manually: yolov3-spp.weights(Google Drive | Baidu pan). Place it into detector/yolo/data.

4. face boxes 预训练权重

google drive

  • 放到face_recog/weights文件夹下

5. 其他

百度云 提取码:rwtl

人脸识别:dlib_face_recognition_resnet_model_v1.dat

  • detection_system/face_recog/weights

人脸对齐:shape_predictor_68_face_landmarks.dat

  • detection_system/face_recog/weights

作弊动作分类器:cheating_detector_rfc_kp.pkl

  • detection_system/weights

使用

运行setup.py安装必要内容

python setup.py build develop

windows上安装scipy1.1.0可能会遇到的问题

运行demo_inference.py

将detection_system设置为source root

image-20210514153925536

使用摄像头运行程序

python demo_inference.py --vis --webcam 0

参考项目

相关信息

About

课堂专注度及考试作弊系统、课堂动态点名。情绪识别、表情识别、姿态识别和人脸识别结合

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 88.5%
  • Cuda 7.2%
  • C++ 3.3%
  • Other 1.0%