-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
67 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import tensorflow as tf | ||
from tensorflow.keras.losses import SparseCategoricalCrossentropy | ||
from tensorflow.keras.metrics import SparseCategoricalAccuracy | ||
from tensorflow.keras.optimizers import Adam | ||
from tensorflow.keras.datasets import mnist | ||
from KANtf import KAN | ||
|
||
# Load and preprocess data | ||
(x_train, y_train), (x_val, y_val) = mnist.load_data() | ||
x_train, x_val = (x_train / 255.0 - 0.5).astype('float32'), (x_val / 255.0 - 0.5).astype('float32') # Normalize | ||
x_train, x_val = x_train.reshape(-1, 784), x_val.reshape(-1, 784) # Flatten | ||
|
||
# Create TensorFlow datasets | ||
train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(64) | ||
val_ds = tf.data.Dataset.from_tensor_slices((x_val, y_val)).batch(64) | ||
|
||
# Define the KAN model | ||
model = KAN([ | ||
{'in_features': 784, 'out_features': 64, 'grid_size': 5, 'spline_order': 3, 'activation': 'silu'}, | ||
{'in_features': 64, 'out_features': 10, 'grid_size': 5, 'spline_order': 3, 'activation': 'silu'} | ||
]) | ||
|
||
# Compile the model with optimizer and loss function | ||
model.compile(optimizer=Adam(learning_rate=1e-3), loss=SparseCategoricalCrossentropy(from_logits=True)) | ||
|
||
# Metrics | ||
train_loss = tf.keras.metrics.Mean(name='train_loss') | ||
val_loss = tf.keras.metrics.Mean(name='val_loss') | ||
val_accuracy = SparseCategoricalAccuracy(name='val_accuracy') | ||
|
||
# Lists to store metrics for plotting | ||
epoch_train_loss = [] | ||
epoch_val_loss = [] | ||
epoch_val_accuracy = [] | ||
|
||
for epoch in range(epochs): | ||
train_loss.reset_states() | ||
val_loss.reset_states() | ||
val_accuracy.reset_states() | ||
|
||
# Existing training and validation loop here ... | ||
|
||
# Append metrics after each epoch | ||
epoch_train_loss.append(train_loss.result().numpy()) | ||
epoch_val_loss.append(val_loss.result().numpy()) | ||
epoch_val_accuracy.append(val_accuracy.result().numpy()) | ||
|
||
print(f'Epoch {epoch + 1}, Train Loss: {train_loss.result():.4f}, Validation Loss: {val_loss.result():.4f}, Validation Accuracy: {val_accuracy.result():.4f}') | ||
|
||
# After training, plot the metrics | ||
plt.figure(figsize=(8, 4)) | ||
plt.subplot(1, 2, 1) | ||
plt.plot(epoch_train_loss, label='Train Loss') | ||
plt.plot(epoch_val_loss, label='Validation Loss') | ||
plt.title('Training and Validation Loss') | ||
plt.xlabel('Epoch') | ||
plt.ylabel('Loss') | ||
plt.legend() | ||
|
||
plt.subplot(1, 2, 2) | ||
plt.plot(epoch_val_accuracy, label='Validation Accuracy') | ||
plt.title('Validation Accuracy') | ||
plt.xlabel('Epoch') | ||
plt.ylabel('Accuracy') | ||
plt.legend() | ||
|
||
plt.show() |