-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #29 from MatsuuraKentaro/test-generate-setup-code
add tests for generate_setup_code
- Loading branch information
Showing
1 changed file
with
267 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,267 @@ | ||
# Base -------------------------------------------------------------------- | ||
doses <- c(0, 2, 4, 6, 8) | ||
models <- DoseFinding::Mods( | ||
doses = doses, maxEff = 1.65, linear = NULL, emax = 0.79, sigEmax = c(4, 5) | ||
) | ||
Delta <- 1.3 | ||
|
||
obj <- new.env() | ||
code <- generate_setup_code( | ||
doses, models, Delta, outcome_type = "continuous", | ||
optimization_metric = "MAE", rl_models = models,seed = 123, alpha = 0.025, | ||
selModel = "AIC", Delta_range = c(0.9, 1.1) * Delta) | ||
eval(code, obj) | ||
|
||
test_that("compute_reward_TD estimated_target_dose = NA", { | ||
act <- obj$compute_reward_TD(NA, "linear") | ||
expect_equal(act, expected = 0) | ||
}) | ||
|
||
test_that("compute_reward_TD", { | ||
act <- obj$compute_reward_TD(5, "linear") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(6, "linear") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(7, "linear") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(1, "emax") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(2, "emax") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(3, "emax") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(4, "sigEmax") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(5, "sigEmax") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(6, "sigEmax") | ||
expect_equal(act, expected = 0) | ||
}) | ||
|
||
test_that("compute_MAE", { | ||
set.seed(123) | ||
x <- rnorm(10) | ||
y <- rnorm(10) | ||
act <- obj$compute_MAE(x, y) | ||
expect_equal(act, expected = 1.8339568) | ||
}) | ||
|
||
test_that("compute_reward_MAE", { | ||
act <- obj$compute_reward_MAE(0.1) | ||
expect_equal(act, expected = 0.87878788) | ||
}) | ||
|
||
test_that("compute_reward fit well", { | ||
model_names <- c("linear", "emax", "sigEmax") | ||
optimization_metrics <- c("MAE", "power", "TD", "power and MAE") | ||
|
||
df_expected <- data.frame( | ||
linear = c(0.98473088, 1, 1, 0.98473088), | ||
emax = c(0.97718847, 1, 1, 0.97718847), | ||
sigEmax = c(0.9839088, 1, 1, 0.9839088), # MacOS: 0.983908858 | ||
row.names = optimization_metrics | ||
) | ||
|
||
for (model_name in model_names) { | ||
set.seed(123) | ||
sim_doses <- sample(doses, 10, replace = TRUE) | ||
actions <- seq_along(obj$doses) | ||
names(actions) <- obj$doses | ||
sim_actions <- actions[as.character(sim_doses)] | ||
true_resps <- obj$true_response_list[[model_name]][sim_actions] | ||
sim_resps <- rnorm(10, mean = true_resps, sd = 0.01) | ||
|
||
for (optimization_metric in optimization_metrics) { | ||
obj$optimization_metric <- optimization_metric | ||
act <- obj$compute_reward(model_name, sim_doses, sim_resps) | ||
expected <- df_expected[optimization_metric, model_name] | ||
expect_equal(act, expected, tolerance = 1e-7) | ||
} | ||
} | ||
|
||
obj$optimization_metric <- "MAE" | ||
}) | ||
|
||
test_that("compute_reward don't fit well", { | ||
model_names <- c("linear", "emax", "sigEmax") | ||
optimization_metrics <- c("MAE", "power", "TD", "power and MAE") | ||
|
||
df_expected <- data.frame( | ||
linear = c(0.16667721, 0, 0, 0), | ||
emax = c(-0.64942815, 0, 0, 0), | ||
sigEmax = c(0.36050607, 0, 0, 0), | ||
row.names = optimization_metrics | ||
) | ||
|
||
for (model_name in model_names) { | ||
set.seed(123) | ||
sim_doses <- sample(doses, 10, replace = TRUE) | ||
actions <- seq_along(obj$doses) | ||
names(actions) <- obj$doses | ||
sim_actions <- actions[as.character(sim_doses)] | ||
true_resps <- obj$true_response_list[[model_name]][sim_actions] | ||
sim_resps <- rnorm(10, mean = true_resps, sd = 0.5) | ||
|
||
for (optimization_metric in optimization_metrics) { | ||
obj$optimization_metric <- optimization_metric | ||
act <- obj$compute_reward(model_name, sim_doses, sim_resps) | ||
expected <- df_expected[optimization_metric, model_name] | ||
expect_equal(act, expected) | ||
} | ||
} | ||
|
||
obj$optimization_metric <- "MAE" | ||
}) | ||
|
||
|
||
# Large Delta ------------------------------------------------------------- | ||
doses <- c(0, 2, 4, 6, 8) | ||
models <- DoseFinding::Mods( | ||
doses = doses, maxEff = 1.65, linear = NULL, emax = 0.79, sigEmax = c(4, 5) | ||
) | ||
Delta <- 1.9 | ||
|
||
obj <- new.env(parent = baseenv()) | ||
code <- generate_setup_code( | ||
doses, models, Delta, outcome_type = "continuous", | ||
optimization_metric = "MAE", rl_models = models,seed = 123, alpha = 0.025, | ||
selModel = "AIC", Delta_range = c(0.9, 1.1) * Delta) | ||
eval(code, obj) | ||
|
||
test_that("compute_reward_TD large Delta", { | ||
act <- obj$compute_reward_TD(8, "linear") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(9, "linear") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(10, "linear") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(11, "linear") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(13, "emax") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(14, "emax") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(1000, "emax") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(1000, "sigEmax") | ||
expect_equal(act, expected = 0) | ||
}) | ||
|
||
|
||
# direction = decreasing -------------------------------------------------- | ||
doses <- c(0, 2, 4, 6, 8) | ||
models <- DoseFinding::Mods( | ||
doses = doses, maxEff = -1.65, linear = NULL, emax = 0.79, sigEmax = c(4, 5), | ||
direction = "decreasing" | ||
) | ||
Delta <- 1.3 | ||
|
||
obj <- new.env(parent = baseenv()) | ||
code <- generate_setup_code( | ||
doses, models, Delta, outcome_type = "continuous", | ||
optimization_metric = "MAE", rl_models = models,seed = 123, alpha = 0.025, | ||
selModel = "AIC", Delta_range = c(0.9, 1.1) * Delta) | ||
eval(code, obj) | ||
|
||
test_that("compute_reward_TD direction = decreasing", { | ||
act <- obj$compute_reward_TD(5, "linear") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(6, "linear") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(7, "linear") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(1, "emax") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(2, "emax") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(3, "emax") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(4, "sigEmax") | ||
expect_equal(act, expected = 0) | ||
act <- obj$compute_reward_TD(5, "sigEmax") | ||
expect_equal(act, expected = 1) | ||
act <- obj$compute_reward_TD(6, "sigEmax") | ||
expect_equal(act, expected = 0) | ||
}) | ||
|
||
|
||
# outcome_type = binary --------------------------------------------------- | ||
doses <- c(0, 0.5, 1.5, 2.5, 4) | ||
models <- DoseFinding::Mods( | ||
doses = doses, placEff = qlogis(0.1), maxEff = qlogis(0.35) - qlogis(0.1), | ||
emax = c(0.25, 1), sigEmax = rbind(c(1, 3), c(2.5, 4)), betaMod = c(1.1, 1.1) | ||
) | ||
Delta <- 1.4 | ||
|
||
obj <- new.env() | ||
code <- generate_setup_code( | ||
doses, models, Delta, outcome_type = "binary", | ||
optimization_metric = "MAE", rl_models = models, seed = 123, alpha = 0.05, | ||
selModel = "AIC", Delta_range = c(0.9, 1.1) * Delta) | ||
eval(code, obj) | ||
|
||
test_that("compute_reward outcome_type = binary fit well", { | ||
model_names <- c("emax1", "emax2", "sigEmax1", "sigEmax2", "betaMod") | ||
optimization_metrics <- c("MAE", "power", "TD", "power and MAE") | ||
|
||
df_expected <- data.frame( | ||
emax1 = c(0.95762338, 1, 1, 0.95762338), | ||
emax2 = c(0.97962054, 1, 1, 0.97962054), | ||
sigEmax1 = c(0.92066444, 1, 1, 0.92066444), | ||
sigEmax2 = c(0.89181074, 1, 1, 0.89181074), | ||
betaMod = c(0.96190979, 1, 1, 0.96190979), | ||
row.names = optimization_metrics | ||
) | ||
|
||
for (model_name in model_names) { | ||
set.seed(123) | ||
sim_doses <- sample(doses, 1400, replace = TRUE) | ||
actions <- seq_along(obj$doses) | ||
names(actions) <- obj$doses | ||
sim_actions <- actions[as.character(sim_doses)] | ||
true_resps <- obj$true_response_list[[model_name]][sim_actions] | ||
sim_resps <- rbinom(1400, 1, plogis(true_resps)) | ||
|
||
for (optimization_metric in optimization_metrics) { | ||
obj$optimization_metric <- optimization_metric | ||
act <- obj$compute_reward(model_name, sim_doses, sim_resps) | ||
expected <- df_expected[optimization_metric, model_name] | ||
expect_equal(act, expected) | ||
} | ||
} | ||
|
||
obj$optimization_metric <- "MAE" | ||
}) | ||
|
||
test_that("compute_reward outcome_type = binary don't fit well", { | ||
model_names <- c("emax1", "emax2", "sigEmax1", "sigEmax2", "betaMod") | ||
optimization_metrics <- c("MAE", "power", "TD", "power and MAE") | ||
|
||
df_expected <- data.frame( | ||
emax1 = c(-0.21123768, 0, 0, 0), | ||
emax2 = c(-0.32752064, 0, 0, 0), | ||
sigEmax1 = c(0.043401334, 0, 0, 0), | ||
sigEmax2 = c(-0.89546023, 0, 0, 0), | ||
betaMod = c(-0.52750171, 0, 0, 0), | ||
row.names = optimization_metrics | ||
) | ||
|
||
for (model_name in model_names) { | ||
set.seed(123) | ||
sim_doses <- sample(doses, 100, replace = TRUE) | ||
actions <- seq_along(obj$doses) | ||
names(actions) <- obj$doses | ||
sim_actions <- actions[as.character(sim_doses)] | ||
true_resps <- obj$true_response_list[[model_name]][sim_actions] | ||
sim_resps <- rbinom(100, 1, plogis(true_resps)) | ||
|
||
for (optimization_metric in optimization_metrics) { | ||
obj$optimization_metric <- optimization_metric | ||
act <- obj$compute_reward(model_name, sim_doses, sim_resps) | ||
expected <- df_expected[optimization_metric, model_name] | ||
expect_equal(act, expected) | ||
} | ||
} | ||
|
||
obj$optimization_metric <- "MAE" | ||
}) |