-
Notifications
You must be signed in to change notification settings - Fork 464
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Doc: Add SQL server CDC guide (#22541)
<!-- Describe the contents of the PR briefly but completely. If you write detailed commit messages, it is acceptable to copy/paste them here, or write "see commit messages for details." If there is only one commit in the PR, GitHub will have already added its commit message above. --> ### Motivation Adding a SQL Server CDC guide that follows the exact same structure as the existing MySQL guide. Also added a demo [here](MaterializeInc/demos#93) for this. Closes #10989 --------- Co-authored-by: Joaquin Colacci <[email protected]>
- Loading branch information
1 parent
d1d7b52
commit dd73e04
Showing
2 changed files
with
179 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
--- | ||
title: "SQL Server CDC using Kafka and Debezium" | ||
description: "How to propagate Change Data Capture (CDC) data from a SQL Server database to Materialize" | ||
aliases: | ||
- /guides/cdc-sql-server/ | ||
- /integrations/cdc-sql-server/ | ||
- /connect-sources/cdc-sql-server/ | ||
menu: | ||
main: | ||
parent: "sql-server" | ||
name: "Using Kafka and Debezium" | ||
identifier: "sql-server-dbz" | ||
weight: 15 | ||
--- | ||
|
||
Change Data Capture (CDC) allows you to track and propagate changes in a SQL Server database to downstream consumers. In this guide, we’ll cover how to use Materialize to create and efficiently maintain real-time materialized views on top of CDC data. | ||
|
||
## Kafka + Debezium | ||
|
||
Use [Debezium](https://debezium.io/) and the [Kafka source](/sql/create-source/kafka/#using-debezium) to propagate CDC data from SQL Server to Materialize. Debezium captures row-level changes resulting from `INSERT`, `UPDATE`, and `DELETE` operations in the upstream database and publishes them as events to Kafka using Kafka Connect-compatible connectors. | ||
|
||
### Database Setup | ||
|
||
Before deploying a Debezium connector, ensure that the upstream database is configured to support CDC. | ||
|
||
1. Enable CDC on the SQL Server instance and database: | ||
|
||
```sql | ||
-- Enable CDC on the SQL Server instance | ||
USE MyDB | ||
GO | ||
EXEC sys.sp_cdc_enable_db | ||
GO | ||
``` | ||
|
||
### Deploy Debezium | ||
|
||
**Minimum requirements:** Debezium 1.5+ | ||
|
||
Debezium is deployed as a set of Kafka Connect-compatible connectors. First, define a SQL Server connector configuration, then start the connector by adding it to Kafka Connect. | ||
|
||
{{< tabs >}} | ||
{{< tab "Debezium 1.5+">}} | ||
|
||
1. Create a connector configuration file and save it as `register-sqlserver.json`: | ||
|
||
```json | ||
{ | ||
"name": "inventory-connector", | ||
"config": { | ||
"connector.class": "io.debezium.connector.sqlserver.SqlServerConnector", | ||
"tasks.max": "1", | ||
"database.server.name": "server1", | ||
"database.hostname": "sqlserver", | ||
"database.port": "1433", | ||
"database.user": "sa", | ||
"database.password": "Password!", | ||
"database.names": "testDB", | ||
"database.history.kafka.bootstrap.servers": "<broker>:9092", | ||
"database.history.kafka.topic": "schema-changes.inventory", | ||
"key.converter": "io.confluent.connect.avro.AvroConverter", | ||
"value.converter": "io.confluent.connect.avro.AvroConverter", | ||
"key.converter.schema.registry.url": "http://<schema-registry>:8081", | ||
"value.converter.schema.registry.url": "http://<schema-registry>:8081", | ||
"database.encrypt": "false" | ||
} | ||
} | ||
``` | ||
|
||
You can read more about each configuration property in the [Debezium documentation](https://debezium.io/documentation/reference/1.9/connectors/sqlserver.html). | ||
|
||
{{< /tab >}} | ||
{{< tab "Debezium 2.0+">}} | ||
|
||
1. Beginning with Debezium 2.0.0, Confluent Schema Registry support is not included in the Debezium containers. To enable the Confluent Schema Registry for a Debezium container, install the following Confluent Avro converter JAR files into the Connect plugin directory: | ||
* `kafka-connect-avro-converter` | ||
* `kafka-connect-avro-data` | ||
* `kafka-avro-serializer` | ||
* `kafka-schema-serializer` | ||
* `kafka-schema-registry-client` | ||
* `common-config` | ||
* `common-utils` | ||
|
||
You can read more about this in the [Debezium documentation](https://debezium.io/documentation/reference/stable/configuration/avro.html#deploying-confluent-schema-registry-with-debezium-containers). | ||
|
||
1. Create a connector configuration file and save it as `register-sqlserver.json`: | ||
|
||
```json | ||
{ | ||
"name": "inventory-connector", | ||
"config": { | ||
"connector.class": "io.debezium.connector.sqlserver.SqlServerConnector", | ||
"tasks.max": "1", | ||
"topic.prefix": "server1", | ||
"database.hostname": "sqlserver", | ||
"database.port": "1433", | ||
"database.user": "sa", | ||
"database.password": "Password!", | ||
"database.names": "testDB", | ||
"schema.history.internal.kafka.bootstrap.servers": "<broker>:9092", | ||
"schema.history.internal.kafka.topic": "schema-changes.inventory", | ||
"key.converter": "io.confluent.connect.avro.AvroConverter", | ||
"value.converter": "io.confluent.connect.avro.AvroConverter", | ||
"key.converter.schema.registry.url": "http://<schema-registry>:8081", | ||
"value.converter.schema.registry.url": "http://<schema-registry>:8081", | ||
"database.encrypt": "false" | ||
} | ||
} | ||
``` | ||
|
||
You can read more about each configuration property in the [Debezium documentation](https://debezium.io/documentation/reference/2.4/connectors/sqlserver.html). By default, the connector writes events for each table to a Kafka topic named `serverName.databaseName.tableName`. | ||
|
||
{{< /tab >}} | ||
{{< /tabs >}} | ||
|
||
2. Start the Debezium SQL Server connector using the configuration file: | ||
|
||
```sh | ||
export CURRENT_HOST='<your-host>' | ||
curl -i -X POST -H "Accept:application/json" -H "Content-Type:application/json" \ | ||
http://$CURRENT_HOST:8083/connectors/ -d @register-sqlserver.json | ||
``` | ||
|
||
3. Check that the connector is running: | ||
|
||
``` | ||
curl http://$CURRENT_HOST:8083/connectors/inventory-connector/status | ||
``` | ||
|
||
Now, Debezium will capture changes from the SQL Server database and publish them to Kafka. | ||
|
||
### Create a Source | ||
|
||
Debezium emits change events using an envelope that contains detailed information about upstream database operations, like the `before` and `after` values for each record. To create a source that interprets the [Debezium envelope](/sql/create-source/kafka/#using-debezium) in Materialize: | ||
|
||
```sql | ||
CREATE SOURCE kafka_repl | ||
FROM KAFKA CONNECTION kafka_connection (TOPIC 'server1.testDB.tableName') | ||
FORMAT AVRO USING CONFLUENT SCHEMA REGISTRY CONNECTION csr_connection | ||
ENVELOPE DEBEZIUM; | ||
``` | ||
|
||
#### Transaction Support | ||
|
||
Debezium provides [transaction metadata](https://debezium.io/documentation/reference/connectors/sqlserver.html#sqlserver-transaction-metadata) that can be used to preserve transactional boundaries downstream. Work is in progress to utilize this topic to support transaction-aware processing in Materialize ([#7537](https://github.com/MaterializeInc/materialize/issues/7537))! | ||
|
||
### Create a Materialized View | ||
|
||
Any materialized view defined on top of this source will be incrementally updated as new change events stream in through Kafka, resulting from `INSERT`, `UPDATE`, and `DELETE` operations in the original SQL Server database. | ||
|
||
```sql | ||
CREATE MATERIALIZED VIEW cnt_table AS | ||
SELECT field1, | ||
COUNT(*) AS cnt | ||
FROM kafka_repl | ||
GROUP BY field1; | ||
``` | ||
|
||
## Known Limitations | ||
|
||
The integration of Debezium with Microsoft SQL Server and Materialize presents a few known bugs that may affect the replication and processing of data. The tracking issue for these bugs is [#8054](https://github.com/MaterializeInc/materialize/issues/8054). | ||
|
||
1. **Incorrect Data Types Replication:** | ||
|
||
- `DATETIMEOFFSET` values from SQL Server are replicated as `TEXT` in Materialize ([#8017](https://github.com/MaterializeInc/materialize/issues/8017)). | ||
- `DATETIME2` values from SQL Server are replicated as `BIGINT` in Materialize ([#8041](https://github.com/MaterializeInc/materialize/issues/8041)). | ||
|
||
1. **Upstream Bug (DBZ-3915):** | ||
|
||
- An upstream bug identified as [DBZ-3915](https://issues.redhat.com/browse/DBZ-3915) on RedHat’s issue tracker presents additional challenges. | ||
|
||
1. **Configuration Limitation:** | ||
|
||
- An operational issue exists which requires halting all updates to the tables intended for replication to Materialize until Debezium is completely configured, all snapshots have been taken, and an additional duration of 10 seconds has elapsed post-configuration. This limitation is significant and may influence the decision to utilize SQL Server and Debezium for this purpose. | ||
|
||
1. **Known Microsoft issues and errors with CDC** | ||
|
||
- The official Microsoft documentation for CDC in SQL Server lists a number of [known issues and errors](https://learn.microsoft.com/en-us/sql/relational-databases/track-changes/known-issues-and-errors-change-data-capture?view=sql-server-ver16) that may affect the replication of data. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters