Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed-Time Motion with Input Shaping by Ulendo #25394

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 47 additions & 1 deletion Marlin/Configuration_adv.h
Original file line number Diff line number Diff line change
Expand Up @@ -1086,7 +1086,51 @@

#endif

// @section motion
// @section motion control

/**
* Fixed-time-based Motion Control -- EXPERIMENTAL
* Enable/disable and set parameters with G-code M493.
*/
//#define FT_MOTION
#if ENABLED(FT_MOTION)
#define FTM_DEFAULT_MODE ftMotionMode_ENABLED // Default mode of fixed time control. (Enums in ft_types.h)
#define FTM_DEFAULT_DYNFREQ_MODE dynFreqMode_DISABLED // Default mode of dynamic frequency calculation. (Enums in ft_types.h)
#define FTM_SHAPING_DEFAULT_X_FREQ 37.0f // (Hz) Default peak frequency used by input shapers.
#define FTM_SHAPING_DEFAULT_Y_FREQ 37.0f // (Hz) Default peak frequency used by input shapers.
#define FTM_LINEAR_ADV_DEFAULT_ENA false // Default linear advance enable (true) or disable (false).
#define FTM_LINEAR_ADV_DEFAULT_K 0.0f // Default linear advance gain.
#define FTM_SHAPING_ZETA 0.1f // Zeta used by input shapers.
#define FTM_SHAPING_V_TOL 0.05f // Vibration tolerance used by EI input shapers.

/**
* Advanced configuration
*/
#define FTM_BATCH_SIZE 100 // Batch size for trajectory generation;
// half the window size for Ulendo FBS.
#define FTM_FS 1000 // (Hz) Frequency for trajectory generation. (1 / FTM_TS)
#define FTM_TS 0.001f // (s) Time step for trajectory generation. (1 / FTM_FS)
#define FTM_STEPPER_FS 20000 // (Hz) Frequency for stepper I/O update.
#define FTM_MIN_TICKS ((STEPPER_TIMER_RATE) / (FTM_STEPPER_FS)) // Minimum stepper ticks between steps.
#define FTM_MIN_SHAPE_FREQ 10 // Minimum shaping frequency.
#define FTM_ZMAX 100 // Maximum delays for shaping functions (even numbers only!).
// Calculate as:
// 1/2 * (FTM_FS / FTM_MIN_SHAPE_FREQ) for ZV.
// (FTM_FS / FTM_MIN_SHAPE_FREQ) for ZVD, MZV.
// 3/2 * (FTM_FS / FTM_MIN_SHAPE_FREQ) for 2HEI.
// 2 * (FTM_FS / FTM_MIN_SHAPE_FREQ) for 3HEI.
#define FTM_STEPS_PER_UNIT_TIME 20 // Interpolated stepper commands per unit time.
// Calculate as (FTM_STEPPER_FS / FTM_FS).
#define FTM_CTS_COMPARE_VAL 10 // Comparison value used in interpolation algorithm.
// Calculate as (FTM_STEPS_PER_UNIT_TIME / 2).
// These values may be configured to adjust duration of loop().
#define FTM_STEPS_PER_LOOP 60 // Number of stepper commands to generate each loop().
#define FTM_POINTS_PER_LOOP 100 // Number of trajectory points to generate each loop().

// This value may be configured to adjust duration to consume the command buffer.
// Try increasing this value if stepper motion is not smooth.
#define FTM_STEPPERCMD_BUFF_SIZE 1000 // Size of the stepper command buffers.
#endif

/**
* Input Shaping -- EXPERIMENTAL
Expand Down Expand Up @@ -1125,6 +1169,8 @@
//#define SHAPING_MENU // Add a menu to the LCD to set shaping parameters.
#endif

// @section motion

#define AXIS_RELATIVE_MODES { false, false, false, false }

// Add a Duplicate option for well-separated conjoined nozzles
Expand Down
7 changes: 7 additions & 0 deletions Marlin/src/MarlinCore.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,9 @@
#include "module/settings.h"
#include "module/stepper.h"
#include "module/temperature.h"
#if ENABLED(FT_MOTION)
#include "module/ft_motion.h"
#endif

#include "gcode/gcode.h"
#include "gcode/parser.h"
Expand Down Expand Up @@ -885,8 +888,12 @@ void idle(bool no_stepper_sleep/*=false*/) {
// Update the LVGL interface
TERN_(HAS_TFT_LVGL_UI, LV_TASK_HANDLER());

// Manage Fixed-time Motion Control
TERN_(FT_MOTION, fxdTiCtrl.loop());

IDLE_DONE:
TERN_(MARLIN_DEV_MODE, idle_depth--);

return;
}

Expand Down
282 changes: 282 additions & 0 deletions Marlin/src/gcode/feature/ft_motion/M493.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,282 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2023 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/

#include "../../../inc/MarlinConfig.h"

#if ENABLED(FT_MOTION)

#include "../../gcode.h"
#include "../../../module/ft_motion.h"

void say_shaping() {
SERIAL_ECHO_TERNARY(fxdTiCtrl.cfg_mode, "Fixed time controller ", "en", "dis", "abled");
if (fxdTiCtrl.cfg_mode == ftMotionMode_DISABLED || fxdTiCtrl.cfg_mode == ftMotionMode_ENABLED) {
SERIAL_ECHOLNPGM(".");
return;
}
#if HAS_X_AXIS
SERIAL_ECHOPGM(" with ");
switch (fxdTiCtrl.cfg_mode) {
default: break;
//case ftMotionMode_ULENDO_FBS: SERIAL_ECHOLNPGM("Ulendo FBS."); return;
case ftMotionMode_ZV: SERIAL_ECHOLNPGM("ZV"); break;
case ftMotionMode_ZVD: SERIAL_ECHOLNPGM("ZVD"); break;
case ftMotionMode_EI: SERIAL_ECHOLNPGM("EI"); break;
case ftMotionMode_2HEI: SERIAL_ECHOLNPGM("2 Hump EI"); break;
case ftMotionMode_3HEI: SERIAL_ECHOLNPGM("3 Hump EI"); break;
case ftMotionMode_MZV: SERIAL_ECHOLNPGM("MZV"); break;
//case ftMotionMode_DISCTF: SERIAL_ECHOLNPGM("discrete transfer functions"); break;
}
SERIAL_ECHOLNPGM(" shaping.");
#endif
}

/**
* M493: Set Fixed-time Motion Control parameters
*
* S<mode> Set the motion / shaping mode. Shaping requires an X axis, at the minimum.
* 0: NORMAL
* 1: FIXED-TIME
* 10: ZV
* 11: ZVD
* 12: EI
* 13: 2HEI
* 14: 3HEI
* 15: MZV
*
* P<bool> Enable (1) or Disable (0) Linear Advance pressure control
*
* K<gain> Set Linear Advance gain
*
* D<mode> Set Dynamic Frequency mode
* 0: DISABLED
* 1: Z-based (Requires a Z axis)
* 2: Mass-based (Requires X and E axes)
*
* A<Hz> Set static/base frequency for the X axis
* F<Hz> Set frequency scaling for the X axis
*
* B<Hz> Set static/base frequency for the Y axis
* H<Hz> Set frequency scaling for the Y axis
*/
void GcodeSuite::M493() {
// Parse 'S' mode parameter.
if (parser.seenval('S')) {
const ftMotionMode_t val = (ftMotionMode_t)parser.value_byte();
switch (val) {
case ftMotionMode_DISABLED:
case ftMotionMode_ENABLED:
#if HAS_X_AXIS
case ftMotionMode_ZVD:
case ftMotionMode_2HEI:
case ftMotionMode_3HEI:
case ftMotionMode_MZV:
//case ftMotionMode_ULENDO_FBS:
//case ftMotionMode_DISCTF:
fxdTiCtrl.cfg_mode = val;
say_shaping();
break;
#endif
default:
SERIAL_ECHOLNPGM("?Invalid control mode [M] value.");
return;
}

switch (val) {
case ftMotionMode_ENABLED: fxdTiCtrl.reset(); break;
#if HAS_X_AXIS
case ftMotionMode_ZV:
case ftMotionMode_ZVD:
case ftMotionMode_EI:
case ftMotionMode_2HEI:
case ftMotionMode_3HEI:
case ftMotionMode_MZV:
fxdTiCtrl.updateShapingN(fxdTiCtrl.cfg_baseFreq[0] OPTARG(HAS_Y_AXIS, fxdTiCtrl.cfg_baseFreq[1]));
fxdTiCtrl.updateShapingA();
fxdTiCtrl.reset();
break;
//case ftMotionMode_ULENDO_FBS:
//case ftMotionMode_DISCTF:
#endif
default: break;
}
}

#if HAS_EXTRUDERS

// Pressure control (linear advance) parameter.
if (parser.seen('P')) {
const bool val = parser.value_bool();
fxdTiCtrl.cfg_linearAdvEna = val;
SERIAL_ECHO_TERNARY(val, "Pressure control: Linear Advance ", "en", "dis", "abled.\n");
}

// Pressure control (linear advance) gain parameter.
if (parser.seenval('K')) {
const float val = parser.value_float();
if (val >= 0.0f) {
fxdTiCtrl.cfg_linearAdvK = val;
SERIAL_ECHOPGM("Pressure control: Linear Advance gain set to: ");
SERIAL_ECHO_F(val, 5);
SERIAL_ECHOLNPGM(".");
}
else { // Value out of range.
SERIAL_ECHOLNPGM("Pressure control: Linear Advance gain out of range.");
}
}

#endif // HAS_EXTRUDERS

#if HAS_Z_AXIS || HAS_EXTRUDERS

// Dynamic frequency mode parameter.
if (parser.seenval('D')) {
if (WITHIN(fxdTiCtrl.cfg_mode, 10U, 19U)) {
const dynFreqMode_t val = dynFreqMode_t(parser.value_byte());
switch (val) {
case dynFreqMode_DISABLED:
fxdTiCtrl.cfg_dynFreqMode = val;
SERIAL_ECHOLNPGM("Dynamic frequency mode disabled.");
break;
#if HAS_Z_AXIS
case dynFreqMode_Z_BASED:
fxdTiCtrl.cfg_dynFreqMode = val;
SERIAL_ECHOLNPGM("Z-based Dynamic Frequency Mode.");
break;
#endif
#if HAS_EXTRUDERS
case dynFreqMode_MASS_BASED:
fxdTiCtrl.cfg_dynFreqMode = val;
SERIAL_ECHOLNPGM("Mass-based Dynamic Frequency Mode.");
break;
#endif
default:
SERIAL_ECHOLNPGM("?Invalid Dynamic Frequency Mode [D] value.");
break;
}
}
else {
SERIAL_ECHOLNPGM("Incompatible shaper for [D] Dynamic Frequency mode.");
}
}

#endif // HAS_Z_AXIS || HAS_EXTRUDERS

#if HAS_X_AXIS

// Parse frequency parameter (X axis).
if (parser.seenval('A')) {
if (WITHIN(fxdTiCtrl.cfg_mode, 10U, 19U)) {
const float val = parser.value_float();
const bool frequencyInRange = WITHIN(val, FTM_MIN_SHAPE_FREQ, (FTM_FS) / 2);
// TODO: Frequency minimum is dependent on the shaper used; the above check isn't always correct.
if (frequencyInRange) {
fxdTiCtrl.cfg_baseFreq[0] = val;
fxdTiCtrl.updateShapingN(fxdTiCtrl.cfg_baseFreq[0] OPTARG(HAS_Y_AXIS, fxdTiCtrl.cfg_baseFreq[1]));
fxdTiCtrl.reset();
if (fxdTiCtrl.cfg_dynFreqMode) { SERIAL_ECHOPGM("Compensator base dynamic frequency (X/A axis) set to:"); }
else { SERIAL_ECHOPGM("Compensator static frequency (X/A axis) set to: "); }
SERIAL_ECHO_F( fxdTiCtrl.cfg_baseFreq[0], 2 );
SERIAL_ECHOLNPGM(".");
}
else { // Frequency out of range.
SERIAL_ECHOLNPGM("Invalid [A] frequency value.");
}
}
else { // Mode doesn't use frequency.
SERIAL_ECHOLNPGM("Incompatible mode for [A] frequency.");
}
}

#if HAS_Z_AXIS || HAS_EXTRUDERS
// Parse frequency scaling parameter (X axis).
if (parser.seenval('F')) {
const bool modeUsesDynFreq = (
TERN0(HAS_Z_AXIS, fxdTiCtrl.cfg_dynFreqMode == dynFreqMode_Z_BASED)
|| TERN0(HAS_EXTRUDERS, fxdTiCtrl.cfg_dynFreqMode == dynFreqMode_MASS_BASED)
);

if (modeUsesDynFreq) {
const float val = parser.value_float();
fxdTiCtrl.cfg_dynFreqK[0] = val;
SERIAL_ECHOPGM("Frequency scaling (X/A axis) set to: ");
SERIAL_ECHO_F(fxdTiCtrl.cfg_dynFreqK[0], 8);
SERIAL_ECHOLNPGM(".");
}
else {
SERIAL_ECHOLNPGM("Incompatible mode for [F] frequency scaling.");
}
}
#endif // HAS_Z_AXIS || HAS_EXTRUDERS

#endif // HAS_X_AXIS

#if HAS_Y_AXIS

// Parse frequency parameter (Y axis).
if (parser.seenval('B')) {
if (WITHIN(fxdTiCtrl.cfg_mode, 10U, 19U)) {
const float val = parser.value_float();
const bool frequencyInRange = WITHIN(val, FTM_MIN_SHAPE_FREQ, (FTM_FS) / 2);
if (frequencyInRange) {
fxdTiCtrl.cfg_baseFreq[1] = val;
fxdTiCtrl.updateShapingN(fxdTiCtrl.cfg_baseFreq[0] OPTARG(HAS_Y_AXIS, fxdTiCtrl.cfg_baseFreq[1]));
fxdTiCtrl.reset();
if (fxdTiCtrl.cfg_dynFreqMode) { SERIAL_ECHOPGM("Compensator base dynamic frequency (Y/B axis) set to:"); }
else { SERIAL_ECHOPGM("Compensator static frequency (Y/B axis) set to: "); }
SERIAL_ECHO_F( fxdTiCtrl.cfg_baseFreq[1], 2 );
SERIAL_ECHOLNPGM(".");
}
else { // Frequency out of range.
SERIAL_ECHOLNPGM("Invalid frequency [B] value.");
}
}
else { // Mode doesn't use frequency.
SERIAL_ECHOLNPGM("Incompatible mode for [B] frequency.");
}
}

#if HAS_Z_AXIS || HAS_EXTRUDERS
// Parse frequency scaling parameter (Y axis).
if (parser.seenval('H')) {
const bool modeUsesDynFreq = (
TERN0(HAS_Z_AXIS, fxdTiCtrl.cfg_dynFreqMode == dynFreqMode_Z_BASED)
|| TERN0(HAS_EXTRUDERS, fxdTiCtrl.cfg_dynFreqMode == dynFreqMode_MASS_BASED)
);

if (modeUsesDynFreq) {
const float val = parser.value_float();
fxdTiCtrl.cfg_dynFreqK[1] = val;
SERIAL_ECHOPGM("Frequency scaling (Y/B axis) set to: ");
SERIAL_ECHO_F(val, 8);
SERIAL_ECHOLNPGM(".");
}
else {
SERIAL_ECHOLNPGM("Incompatible mode for [H] frequency scaling.");
}
}
#endif // HAS_Z_AXIS || HAS_EXTRUDERS

#endif // HAS_Y_AXIS
}

#endif // FT_MOTION
6 changes: 5 additions & 1 deletion Marlin/src/gcode/gcode.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -895,6 +895,10 @@ void GcodeSuite::process_parsed_command(const bool no_ok/*=false*/) {
case 486: M486(); break; // M486: Identify and cancel objects
#endif

#if ENABLED(FT_MOTION)
case 493: M493(); break; // M493: Fixed-Time Motion control
#endif

case 500: M500(); break; // M500: Store settings in EEPROM
case 501: M501(); break; // M501: Read settings from EEPROM
case 502: M502(); break; // M502: Revert to default settings
Expand Down Expand Up @@ -934,7 +938,7 @@ void GcodeSuite::process_parsed_command(const bool no_ok/*=false*/) {
#endif

#if HAS_ZV_SHAPING
case 593: M593(); break; // M593: Set Input Shaping parameters
case 593: M593(); break; // M593: Input Shaping control
#endif

#if ENABLED(ADVANCED_PAUSE_FEATURE)
Expand Down
4 changes: 4 additions & 0 deletions Marlin/src/gcode/gcode.h
Original file line number Diff line number Diff line change
Expand Up @@ -1038,6 +1038,10 @@ class GcodeSuite {
static void M486();
#endif

#if ENABLED(FT_MOTION)
static void M493();
#endif

static void M500();
static void M501();
static void M502();
Expand Down
Loading