-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmanipulation.py
416 lines (358 loc) · 21.8 KB
/
manipulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import robotic as ry
import numpy as np
import time
class KOMO_ManipulationHelper():
def __init__(self, info=str()):
self.info = info
self.komo = ry.KOMO()
def setup_inverse_kinematics(self, C, homing_scale=1e-1, accumulated_collisions=True, joint_limits=True, quaternion_norms=True):
'''
setup a 1 phase single step problem
'''
self.komo.setTiming(1., 1, 1., 0)
self.komo.setConfig(C, accumulated_collisions)
self.komo.addControlObjective([], 0, homing_scale)
if accumulated_collisions:
self.komo.addObjective([], ry.FS.accumulatedCollisions, [], ry.OT.eq, [1e0])
if joint_limits:
self.komo.addObjective([], ry.FS.jointLimits, [], ry.OT.ineq, [1e0])
if quaternion_norms:
self.komo.addQuaternionNorms()
def setup_sequence(self, C, K, homing_scale=1e-2, velocity_scale=1e-1, accumulated_collisions=True, joint_limits=True, quaternion_norms=True):
self.komo.setTiming(float(K), 1, 1., 1)
self.komo.setConfig(C, accumulated_collisions)
self.komo.addControlObjective([], 0, homing_scale)
self.komo.addControlObjective([], 1, velocity_scale)
if accumulated_collisions:
self.komo.addObjective([], ry.FS.accumulatedCollisions, [], ry.OT.eq, [1e0])
if joint_limits:
self.komo.addObjective([], ry.FS.jointLimits, [], ry.OT.ineq, [1e0])
if quaternion_norms:
self.komo.addQuaternionNorms()
def setup_motion(self, C, K, steps_per_phase, homing_scale=0., acceleration_scale=1e-1, accumulated_collisions=True, joint_limits=True, quaternion_norms=True):
self.komo.setTiming(K, steps_per_phase, 1., 2)
self.komo.setConfig(C, True) #accumulated_collisions)
if homing_scale>0.:
self.komo.addControlObjective([], 0, homing_scale)
self.komo.addControlObjective([], 2, acceleration_scale)
if accumulated_collisions:
self.komo.addObjective([], ry.FS.accumulatedCollisions, [], ry.OT.eq, [1e0])
if joint_limits:
self.komo.addObjective([], ry.FS.jointLimits, [], ry.OT.ineq, [1e0])
if quaternion_norms:
self.komo.addQuaternionNorms()
# zero vel at end
self.komo.addObjective([float(K)], ry.FS.qItself, [], ry.OT.eq, [1e0], [], 1)
def setup_pick_and_place_waypoints(self, C, gripper, obj, homing_scale=1e-2, velocity_scale=1e-1, accumulated_collisions=True, joint_limits=True, quaternion_norms=False):
'''
setup a 2 phase pick-and-place problem, with a pick switch at time 1, and a place switch at time 2
the place mode switch at the final time two might seem obselete, but this switch also implies the geometric constraints of placeOn
'''
self.setup_sequence(C, 2, homing_scale, velocity_scale, accumulated_collisions, joint_limits, quaternion_norms)
#-- option 1: old-style mode switches: //a temporary free stable joint gripper -> object
#self.komo.addModeSwitch([1.,-1.], ry.SY.stable, [gripper, obj], True)
#-- option 2: a permanent free stable gripper->grasp joint; and a snap grasp->object
self.add_stable_frame(ry.JT.free, gripper, 'obj_grasp', initFrame=obj)
self.snap_switch(1., 'obj_grasp', obj)
#-- option 3: a permanent free stable object->grasp joint; and a snap gripper->grasp
# self.komo.add_stable_frame(ry.JT.free, obj, 'obj_grasp', initFrame=obj)
# self.snap_switch(1., gripper, 'obj_grasp')
def setup_point_to_point_motion(self, C, q1, homing_scale=1e-2, acceleration_scale=1e-1, accumulated_collisions=True, joint_limits=True, quaternion_norms=False):
'''
setup a 1 phase fine-grained motion problem with 2nd order (acceleration) control costs
'''
self.setup_motion(C, 1, 50, homing_scale, acceleration_scale, accumulated_collisions, joint_limits, quaternion_norms)
self.komo.initWithWaypoints([q1], 1, interpolate=True, qHomeInterpolate=(.2 if homing_scale>1e-2 else .0), verbose=0)
self.komo.addObjective([1.], ry.FS.qItself, [], ry.OT.eq, scale=[1e0], target=q1)
def add_stable_frame(self, jointType, parent, name, initFrame=None, markerSize=-1.):
if isinstance(initFrame, str):
f = self.komo.addFrameDof(name, parent, jointType, True, initFrame, None)
else:
f = self.komo.addFrameDof(name, parent, jointType, True, None, initFrame)
if markerSize>0.:
f.setShape(ry.ST.marker, [.1])
f.setColor([1., 0., 1.])
#f.joint.sampleSdv=1.
#f.joint.setRandom(self.timeSlices.d1, 0)
def grasp_top_box(self, time, gripper, obj, grasp_direction='xz'):
'''
grasp a box with a centered top grasp (axes fully aligned)
'''
if grasp_direction == 'xz':
align = [ry.FS.scalarProductXY, ry.FS.scalarProductXZ, ry.FS.scalarProductYZ]
elif grasp_direction == 'yz':
align = [ry.FS.scalarProductYY, ry.FS.scalarProductXZ, ry.FS.scalarProductYZ]
elif grasp_direction == 'xy':
align = [ry.FS.scalarProductXY, ry.FS.scalarProductXZ, ry.FS.scalarProductZZ]
elif grasp_direction == 'zy':
align = [ry.FS.scalarProductXX, ry.FS.scalarProductXZ, ry.FS.scalarProductZZ]
elif grasp_direction == 'yx':
align = [ry.FS.scalarProductYY, ry.FS.scalarProductYZ, ry.FS.scalarProductZZ]
elif grasp_direction == 'zx':
align = [ry.FS.scalarProductYX, ry.FS.scalarProductYZ, ry.FS.scalarProductZZ]
else:
raise Exception('pickDirection not defined:', grasp_direction)
# position: centered
self.komo.addObjective([time], ry.FS.positionDiff, [gripper, obj], ry.OT.eq, [1e1])
# orientation: grasp axis orthoginal to target plane X-specific
self.komo.addObjective([time-.2,time], align[0], [obj, gripper], ry.OT.eq, [1e0])
self.komo.addObjective([time-.2,time], align[1], [obj, gripper], ry.OT.eq, [1e0])
self.komo.addObjective([time-.2,time], align[2], [obj, gripper], ry.OT.eq, [1e0])
def grasp_box(self, time, gripper, obj, palm, grasp_direction='x', margin=.02):
'''
general grasp of a box, squeezing along provided grasp_axis (-> 3
possible grasps of a box), where and angle of grasp is decided by
inequalities on grasp plan and no-collision of box and palm
'''
if grasp_direction == 'x':
xLine = np.array([[1, 0, 0]])
yzPlane = np.array([[0, 1, 0],[0, 0, 1]])
align = [ry.FS.scalarProductXY, ry.FS.scalarProductXZ]
elif grasp_direction == 'y':
xLine = np.array([[0, 1, 0]])
yzPlane = np.array([[1, 0, 0],[0, 0, 1]])
align = [ry.FS.scalarProductXX, ry.FS.scalarProductXZ]
elif grasp_direction == 'z':
xLine = np.array([[0, 0, 1]])
yzPlane = np.array([[1, 0, 0],[0, 1, 0]])
align = [ry.FS.scalarProductXX, ry.FS.scalarProductXY]
else:
raise Exception('grasp_direction not defined:', grasp_direction)
boxSize = self.komo.getConfig().getFrame(obj).getSize()[:3]
# position: center in inner target plane X-specific
self.komo.addObjective([time], ry.FS.positionRel, [gripper, obj], ry.OT.eq, xLine*1e1)
self.komo.addObjective([time], ry.FS.positionRel, [gripper, obj], ry.OT.ineq, yzPlane*1e1, .5*boxSize-margin)
self.komo.addObjective([time], ry.FS.positionRel, [gripper, obj], ry.OT.ineq, yzPlane*(-1e1), -.5*boxSize+margin)
# orientation: grasp axis orthoginal to target plane X-specific
self.komo.addObjective([time-.2,time], align[0], [gripper, obj], ry.OT.eq, [1e0])
self.komo.addObjective([time-.2,time], align[1], [gripper, obj], ry.OT.eq, [1e0])
# no collision with palm
self.komo.addObjective([time-.3,time], ry.FS.distance, [palm, obj], ry.OT.ineq, [1e1], [-.001])
def grasp_cylinder(self, time, gripper, obj, palm, margin=.02):
'''
general grasp of a cylinder, with squeezing the axis normally,
inequality along z-axis for positioning, and no-collision with palm
'''
size = self.komo.getConfig().getFrame(obj).getSize()[:2]
# position: center along axis, stay within z-range
self.komo.addObjective([time], ry.FS.positionRel, [gripper, obj], ry.OT.eq, np.array([[1, 0, 0],[0, 1, 0]])*1e1)
self.komo.addObjective([time], ry.FS.positionRel, [gripper, obj], ry.OT.ineq, np.array([[0, 0, 1]])*1e1, np.array([0.,0.,.5*size[0]-margin]))
self.komo.addObjective([time], ry.FS.positionRel, [gripper, obj], ry.OT.ineq, np.array([[0, 0, 1]])*(-1e1), np.array([0.,0.,-.5*size[0]+margin]))
# orientation: grasp axis orthoginal to target plane X-specific
self.komo.addObjective([time-.2,time], ry.FS.scalarProductXZ, [gripper, obj], ry.OT.eq, [1e0])
# no collision with palm
self.komo.addObjective([time-.3,time], ry.FS.distance, [palm, obj], ry.OT.ineq, [1e1], [-.001])
def place_box(self, time, obj, table, palm, place_direction='z', margin=.02):
'''
placement of one box on another
'''
zVectorTarget = np.array([0.,0.,1.])
obj_frame = self.komo.getConfig().getFrame(obj)
boxSize = obj_frame.getSize()
if obj_frame.getShapeType()==ry.ST.ssBox:
boxSize = boxSize[:3]
elif obj_frame.getShapeType()==ry.ST.ssCylinder:
boxSize = [boxSize[1], boxSize[1], boxSize[0]]
else:
raise Exception('NIY')
tableSize = self.komo.getConfig().getFrame(table).getSize()[:3]
if place_direction == 'x':
relPos = .5*(boxSize[0]+tableSize[2])
zVector = ry.FS.vectorX
align = [ry.FS.scalarProductXX, ry.FS.scalarProductYX]
elif place_direction == 'y':
relPos = .5*(boxSize[1]+tableSize[2])
zVector = ry.FS.vectorY
align = [ry.FS.scalarProductXY, ry.FS.scalarProductYY]
elif place_direction == 'z':
relPos = .5*(boxSize[2]+tableSize[2])
zVector = ry.FS.vectorZ
align = [ry.FS.scalarProductXZ, ry.FS.scalarProductYZ]
elif place_direction == 'xNeg':
relPos = .5*(boxSize[0]+tableSize[2])
zVector = ry.FS.vectorX
zVectorTarget *= -1.
align = [ry.FS.scalarProductXX, ry.FS.scalarProductYX]
elif place_direction == 'yNeg':
relPos = .5*(boxSize[1]+tableSize[2])
zVector = ry.FS.vectorY
zVectorTarget *= -1.
align = [ry.FS.scalarProductXY, ry.FS.scalarProductYY]
elif place_direction == 'zNeg':
relPos = .5*(boxSize[2]+tableSize[2])
zVector = ry.FS.vectorZ
zVectorTarget *= -1.
align = [ry.FS.scalarProductXZ, ry.FS.scalarProductYZ]
else:
raise Exception('place_direction not defined:', place_direction)
# position: above table, inside table
self.komo.addObjective([time], ry.FS.positionDiff, [obj, table], ry.OT.eq, 1e1*np.array([[0, 0, 1]]), np.array([.0, .0, relPos]))
self.komo.addObjective([time], ry.FS.positionRel, [obj, table], ry.OT.ineq, 1e1*np.array([[1, 0, 0],[0, 1, 0]]), .5*tableSize-margin)
self.komo.addObjective([time], ry.FS.positionRel, [obj, table], ry.OT.ineq, -1e1*np.array([[1, 0, 0],[0, 1, 0]]), -.5*tableSize+margin)
# orientation: Z-up
self.komo.addObjective([time-.2, time], zVector, [obj], ry.OT.eq, [0.5], zVectorTarget)
self.komo.addObjective([time-.2,time], align[0], [table, obj], ry.OT.eq, [1e0])
self.komo.addObjective([time-.2,time], align[1], [table, obj], ry.OT.eq, [1e0])
# no collision with palm
if palm != None:
self.komo.addObjective([time-.3, time], ry.FS.distance, [palm, table], ry.OT.ineq, [1e1], [-.001])
def straight_push(self, time_interval, obj, gripper, table):
#start & end helper frames
helperStart = f'_straight_pushStart_{gripper}_{obj}_{time_interval[0]}'
#helperEnd = f'_straight_pushEnd_{gripper}_{obj}_{time_interval[1]}'
if not self.komo.getConfig().getFrame(helperStart, False):
# self.add_stable_frame(ry.JT.hingeZ, table, helperStart, obj, .3)
helper_frame = self.komo.addFrameDof(helperStart, obj, ry.JT.hingeZ, True)
# helper_frame.setAutoLimits()
# helper_frame.joint.sampleUniform=1.
#x-axis of A aligns with diff-pos of B AT END TIMEnot (always backward diff)
self.komo.addObjective([time_interval[1]], ry.FS.AlignYWithDiff, [helperStart, obj], ry.OT.eq, [1e0], [], 1)
#gripper touch
self.komo.addObjective([time_interval[0]], ry.FS.negDistance, [gripper, obj], ry.OT.eq, [1e1], [-.025])
#gripper start position
self.komo.addObjective([time_interval[0]], ry.FS.positionRel, [gripper, helperStart], ry.OT.eq, 1e1*np.array([[1., 0., 0.], [0., 0., 1.]]))
self.komo.addObjective([time_interval[0]], ry.FS.positionRel, [gripper, helperStart], ry.OT.ineq, 1e1*np.array([[0., 1., 0.]]), [.0, -.02, .0])
#gripper start orientation
self.komo.addObjective([time_interval[0]], ry.FS.scalarProductYY, [gripper, helperStart], ry.OT.ineq, [-1e0], [.2])
self.komo.addObjective([time_interval[0]], ry.FS.scalarProductYZ, [gripper, helperStart], ry.OT.ineq, [-1e0], [.2])
self.komo.addObjective([time_interval[0]], ry.FS.vectorXDiff, [gripper, helperStart], ry.OT.eq, [1e0])
self.freeze_relativePose([time_interval[1]], gripper, obj)
return helperStart
def pull(self, times, obj, gripper, table):
self.komo.add_stable_frame(ry.JT.transXYPhi, table, '_pull_end', obj)
self.komo.addObjective([times[0]], ry.FS.vectorZ, [gripper], ry.OT.eq, [1e1], np.array([0,0,1]))
self.komo.addObjective([times[1]], ry.FS.vectorZ, [gripper], ry.OT.eq, [1e1], np.array([0,0,1]))
self.komo.addObjective([times[0]], ry.FS.vectorZ, [obj], ry.OT.eq, [1e1], np.array([0,0,1]))
self.komo.addObjective([times[1]], ry.FS.vectorZ, [obj], ry.OT.eq, [1e1], np.array([0,0,1]))
self.komo.addObjective([times[1]], ry.FS.positionDiff, [obj, '_pull_end'], ry.OT.eq, [1e1])
self.komo.addObjective([times[0]], ry.FS.positionRel, [gripper, obj], ry.OT.eq, 1e1*np.array([[1., 0., 0.], [0., 1., 0.]]), np.array([0, 0, 0]))
self.komo.addObjective([times[0]], ry.FS.negDistance, [gripper, obj], ry.OT.eq, [1e1], [-.005])
def no_collisions(self, time_interval, objs, margin=.001, scale=1e1):
'''
inequality on distance between pairs of objects
'''
while len(objs) > 1:
comp = objs[0]
del objs[0]
for obj in objs:
self.komo.addObjective(time_interval, ry.FS.negDistance, [comp, obj], ry.OT.ineq, [scale], [-margin])
def freeze_joint(self, time_interval, joints):
'''
constrain velocity of joint to zero
'''
self.komo.addObjective(time_interval, ry.FS.qItself, joints, ry.OT.eq, [1e1], [], 1)
def freeze_relativePose(self, time_interval, obj, relFrom):
'''
constrain velocity of the pose of 'obj' relative to 'relFrom' to zero
'''
self.komo.addObjective(time_interval, ry.FS.poseRel, [obj, relFrom], ry.OT.eq, [1e1], [], 1)
def snap_switch(self, time, parent, obj):
'''
a kinematic mode switch, where at given time the obj becomes attached to parent with zero relative transform
the parent is typically a stable_frame (i.e. a frame that has parameterized but stable (i.e. constant) relative transform)
'''
self.komo.addRigidSwitch(time, [parent, obj])
def target_relative_xy_position(self, time, obj, relativeTo, pos):
'''
impose a specific 3D target position on some object
'''
if len(pos)==2:
pos.append(0.)
self.komo.addObjective([time], ry.FS.positionRel, [obj, relativeTo], ry.OT.eq, scale=1e1*np.array([[1,0,0],[0,1,0]]), target=pos)
def target_x_orientation(self, time, obj, x_vector):
'''
'''
self.komo.addObjective([time], ry.FS.vectorX, [obj], ry.OT.eq, scale=[1e1], target=x_vector)
def bias(self, time, qBias, scale=1e0):
'''
impose a square potential bias directly in joint space
'''
self.komo.addObjective([time], ry.FS.qItself, [], ry.OT.sos, scale=scale, target=qBias)
def retract(self, time_interval, gripper, dist=.03):
helper = f'_{gripper}_retract_{time_interval[0]}'
f = self.komo.getFrame(gripper, time_interval[0])
self.add_stable_frame(ry.JT.none, '', helper, f)
# self.view(True, helper)
self.komo.addObjective(time_interval, ry.FS.positionRel, [gripper, helper], ry.OT.eq, 1e2 * np.array([[1, 0, 0]]))
self.komo.addObjective(time_interval, ry.FS.quaternionDiff, [gripper, helper], ry.OT.eq, [1e2])
self.komo.addObjective([time_interval[1]], ry.FS.positionRel, [gripper, helper], ry.OT.ineq, -1e2 * np.array([[0, 0, 1]]), target = [0., 0., dist])
def approach(self, time_interval, gripper, dist=.03):
helper = f'_{gripper}_approach_{time_interval[1]}'
f = self.komo.getFrame(gripper, time_interval[1])
self.add_stable_frame(ry.JT.none, '', helper, f)
# self.view(True, helper)
self.komo.addObjective(time_interval, ry.FS.positionRel, [gripper, helper], ry.OT.eq, 1e2 * np.array([[1, 0, 0]]))
self.komo.addObjective(time_interval, ry.FS.quaternionDiff, [gripper, helper], ry.OT.eq, [1e2])
self.komo.addObjective([time_interval[0]], ry.FS.positionRel, [gripper, helper], ry.OT.ineq, -1e2 * np.array([[0, 0, 1]]), target = [0., 0., dist])
def retractPush(self, time_interval, gripper, dist):
helper = f'_{gripper}_retractPush_{time_interval[0]}'
f = self.komo.getFrame(gripper, time_interval[0])
self.add_stable_frame(ry.JT.none, '', helper, f)
# self.komo.addObjective(time_interval, ry.FS.positionRel, [gripper, helper], ry.OT.eq, * np.array([[1,3},{1,0,0]]))
# self.komo.addObjective(time_interval, ry.FS.quaternionDiff, [gripper, helper], ry.OT.eq, [1e2])
self.komo.addObjective(time_interval, ry.FS.positionRel, [gripper, helper], ry.OT.eq, * np.array([[1, 0, 0]]))
self.komo.addObjective([time_interval[1]], ry.FS.positionRel, [gripper, helper], ry.OT.ineq, * np.array([[0, 1, 0]]), [0., -dist, 0.])
self.komo.addObjective([time_interval[1]], ry.FS.positionRel, [gripper, helper], ry.OT.ineq, -1e2 * np.array([[0, 0, 1]]), [0., 0., dist])
def approachPush(self, time_interval, gripper, dist):
helper = f'_{gripper}_approachPush_{time_interval[1]}'
f = self.komo.getFrame(gripper, time_interval[1])
self.add_stable_frame(ry.JT.none, '', helper, f)
self.komo.addObjective(time_interval, ry.FS.positionRel, [gripper, helper], ry.OT.eq, * np.array([[1, 0, 0]]))
self.komo.addObjective([time_interval[0]], ry.FS.positionRel, [gripper, helper], ry.OT.ineq, * np.array([[0, 1, 0]]), [0., -dist, 0.])
self.komo.addObjective([time_interval[0]], ry.FS.positionRel, [gripper, helper], ry.OT.ineq, -1e2 * np.array([[0, 0, 1]]), [0., 0., dist])
def solve(self, verbose=1):
sol = ry.NLP_Solver()
sol.setProblem(self.komo.nlp())
sol.setOptions(damping=1e-1, verbose=verbose-1, stopTolerance=1e-3, lambdaMax=100., stopInners=20, stopEvals=200)
self.ret = sol.solve()
if self.ret.feasible:
self.path = self.komo.getPath()
else:
self.path = None
if verbose>0:
if not self.ret.feasible:
print(f' -- infeasible:{self.info}\n {self.ret}')
if verbose>1:
print(self.komo.report(False, True))
self.komo.view(True, f'failed: {self.info}\n{self.ret}')
if verbose>2:
while(self.komo.view_play(True, 1.)):
pass
else:
print(f' -- feasible:{self.info}\n {self.ret}')
if verbose>2:
self.komo.view(True, f'success: {self.info}\n{self.ret}')
if verbose>3:
while(self.komo.view_play(True, 1.)):
pass
return self.ret
def debug(self, listObjectives, plotOverTime):
# cout <<' -- DEBUG: ' <<info <<endl
# cout <<' == solver return: ' <<*ret <<endl
# cout <<' == all KOMO objectives with increasing errors:\n' <<self.report(False, listObjectives, plotOverTime) <<endl
# # cout <<' == objectives sorted by error and Lagrange gradient:\n' <<sol.reportLagrangeGradients(self.featureNames) <<endl
# cout <<' == view objective errors over slices in gnuplot' <<endl
# cout <<' == scroll through solution in display window using SHIFT-scroll' <<endl
self.komo.view(True, f'debug: {info}\n{self.ret}')
def play(self, C: ry.Config, duration=1.):
dofs = C.getJointIDs()
path = self.komo.getPath(dofs)
for t in range(self.path.shape[0]):
C.setJointState(path[t])
C.view(False, f'step {t}\n{self.info}')
time.sleep(duration/self.path.shape[0])
def sub_motion(self, phase, fixEnd=True, homing_scale=1e-2, acceleration_scale=1e-1, accumulated_collisions=True, quaternion_norms=False):
(C, q0, q1) = self.komo.getSubProblem(phase)
komo = KOMO_ManipulationHelper(f'sub_motion_{phase}--{self.info}')
komo.setup_point_to_point_motion(C, q1, homing_scale, acceleration_scale, accumulated_collisions, quaternion_norms)
return komo
def sub_rrt(self, phase, explicitCollisionPairs=[]):
(C, q0, q1) = self.komo.getSubProblem(phase)
rrt = ry.RRT_PathFinder()
rrt.setProblem(C, q0, q1)
if len(explicitCollisionPairs):
rrt.setExplicitCollisionPairs(explicitCollisionPairs)
return rrt
@property
def feasible(self):
return self.ret.feasible