Skip to content

Commit

Permalink
Merge pull request #844 from xylar/fix-land-ice-locked-cells
Browse files Browse the repository at this point in the history
Fix land- and land-ice-locked cells
  • Loading branch information
xylar authored Jul 18, 2024
2 parents a9c70f8 + 679146b commit 4bc61ef
Showing 1 changed file with 61 additions and 20 deletions.
81 changes: 61 additions & 20 deletions compass/ocean/mesh/cull.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import os

import mpas_tools.io
import numpy as np
import xarray as xr
from geometric_features import (
FeatureCollection,
Expand Down Expand Up @@ -435,15 +436,19 @@ def _cull_mesh_with_logging(logger, with_cavities, with_critical_passages,
check_call(args, logger=logger)

if has_remapped_topo:
_cull_topo(with_cavities, process_count, logger)
_cull_topo(with_cavities, process_count, logger, latitude_threshold,
sweep_count)

if with_cavities:
dsMask = xr.open_dataset('topography_culled.nc')
dsMask = dsMask[['regionCellMasks',]]

dsMask = add_land_locked_cells_to_mask(
dsMask, dsCulledMesh, latitude_threshold=latitude_threshold,
nSweeps=sweep_count)
if not has_remapped_topo:
# we haven't dealt with cells land-locked next to land and
# land-ice yet
dsMask = add_land_locked_cells_to_mask(
dsMask, dsCulledMesh, latitude_threshold=latitude_threshold,
nSweeps=sweep_count)

landIceMask = dsMask.regionCellMasks.isel(nRegions=0)
dsLandIceMask = xr.Dataset()
Expand All @@ -470,20 +475,25 @@ def _cull_mesh_with_logging(logger, with_cavities, with_critical_passages,
use_progress_bar=use_progress_bar)


def _cull_topo(with_cavities, process_count, logger):
def _cull_topo(with_cavities, process_count, logger, latitude_threshold,
sweep_count):

ds_topo = xr.open_dataset('topography.nc')
ds_base = xr.open_dataset('base_mesh.nc')
if with_cavities:
_add_land_ice_mask_and_mask_draft(ds_topo, ds_base, logger)
write_netcdf(ds_topo, 'topography_with_land_ice_mask.nc')

ds_culled = xr.open_dataset('culled_mesh.nc')
ds_map_culled_to_base = map_culled_to_base(ds_base=ds_base,
ds_culled=ds_culled,
workers=process_count)
logger.info('Culling topography')
write_netcdf(ds_map_culled_to_base, 'map_culled_to_base.nc')

if with_cavities:
_add_land_ice_mask_and_mask_draft(ds_topo, ds_base,
ds_map_culled_to_base, logger,
latitude_threshold, sweep_count)
write_netcdf(ds_topo, 'topography_with_land_ice_mask.nc')

logger.info('Culling topography')
ds_culled_topo = cull_dataset(ds=ds_topo, ds_base_mesh=ds_base,
ds_culled_mesh=ds_culled,
ds_map_culled_to_base=ds_map_culled_to_base,
Expand Down Expand Up @@ -514,33 +524,64 @@ def _land_mask_from_topo(with_cavities, topo_filename, mask_filename):
write_netcdf(ds_mask, mask_filename)


def _add_land_ice_mask_and_mask_draft(ds_topo, ds_base_mesh, logger):
def _add_land_ice_mask_and_mask_draft(ds_topo, ds_base_mesh,
ds_map_culled_to_base, logger,
latitude_threshold, sweep_count):
land_ice_frac = ds_topo.landIceFracObserved

# we want the mask to be 1 where there's at least half land-ice
land_ice_mask = xr.where(land_ice_frac > 0.5, 1, 0)

ocean_mask = 1 - land_ice_mask

gf = GeometricFeatures()
fc_ocean_seed = gf.read(componentName='ocean', objectType='point',
tags=['seed_point'])

# flood fill the ocean portion to fill in any holes in the land ice
ds_mask = compute_mpas_flood_fill_mask(dsMesh=ds_base_mesh,
daGrow=ocean_mask,
fcSeed=fc_ocean_seed,
logger=logger)
land_ice_mask = 1 - ds_mask.cellSeedMask

fc_south_pole_seed = read_feature_collection('south_pole.geojson')

# now flood fill the ice portion to remove isolated land ice
# flood fill the ice portion to remove isolated land ice

ds_mask = compute_mpas_flood_fill_mask(dsMesh=ds_base_mesh,
daGrow=land_ice_mask,
fcSeed=fc_south_pole_seed,
logger=logger)
land_ice_mask = ds_mask.cellSeedMask

# now, remove land-locked or land-ice-locked cells

map_culled_to_base = ds_map_culled_to_base.mapCulledToBaseCell.values

ncells_base = ds_base_mesh.sizes['nCells']
# the mask is 1 (for land) by default
land_and_land_ice_mask = np.ones(ncells_base, dtype=int)
# where land has not been culled out, the mask is land_ice_mask
land_and_land_ice_mask[map_culled_to_base] = \
land_ice_mask[map_culled_to_base]

ds_mask = xr.Dataset()
ds_mask['regionCellMasks'] = ('nCells', land_and_land_ice_mask)
ds_mask['regionCellMasks'] = \
ds_mask.regionCellMasks.expand_dims(dim='nRegions', axis=1)

ds_mask.to_netcdf('land_and_land_ice_mask.nc')
# re-open from file so regionCellMasks can be assigned to.
ds_mask = xr.open_dataset('land_and_land_ice_mask.nc')

ds_mask = add_land_locked_cells_to_mask(
ds_mask, ds_base_mesh, latitude_threshold=latitude_threshold,
nSweeps=sweep_count)

land_ice_mask = ds_mask.regionCellMasks.isel(nRegions=0)

# finally, flood fill the ocean portion to fill in any holes in the land
# ice
ocean_mask = 1 - land_ice_mask

ds_mask = compute_mpas_flood_fill_mask(dsMesh=ds_base_mesh,
daGrow=ocean_mask,
fcSeed=fc_ocean_seed,
logger=logger)
land_ice_mask = 1 - ds_mask.cellSeedMask

ds_topo['landIceMask'] = land_ice_mask
region_cell_mask = land_ice_mask.expand_dims(dim='nRegions', axis=1)
ds_topo['regionCellMasks'] = region_cell_mask
Expand Down

0 comments on commit 4bc61ef

Please sign in to comment.