Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feat] add graph build test of ase and matscipy in pytest #131

Merged
merged 1 commit into from
Dec 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -69,3 +69,13 @@ exclude = ["tests*", "example_inputs*", ]
log_cli = true
log_cli_format = "%(asctime)s [%(levelname)8s] %(message)s (%(filename)s:%(lineno)s)"
log_cli_date_format = "%Y-%m-%d %H:%M:%S"

[tool.ruff]
line-length = 85

[tool.ruff.lint]
extend-select = ["E501"]

[tool.ruff.format]
quote-style = "single"
docstring-code-format = true
121 changes: 119 additions & 2 deletions tests/unit_tests/test_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,28 +10,44 @@
import numpy as np
import pytest
import torch
from ase import Atoms
from ase.build import bulk, molecule
from torch_geometric.loader import DataLoader

import sevenn._keys as KEY
import sevenn.train.dataload as dl
import sevenn.train.graph_dataset as ds
from sevenn._const import NUM_UNIV_ELEMENT
from sevenn.atom_graph_data import AtomGraphData
from sevenn.util import model_from_checkpoint, pretrained_name_to_path

cutoff = 4.0
lattice_constant = 3.35

_samples = {
'bulk': bulk('NaCl', 'rocksalt', a=5.63),
'mol': molecule('H2O'),
'isolated': molecule('H'),
'small_bulk': Atoms(
symbols='Cu',
positions=[
(0, 0, 0), # Atom at the corner of the cube
],
cell=[
[lattice_constant, 0, 0],
[0, lattice_constant, 0],
[0, 0, lattice_constant],
],
pbc=True, # Periodic boundary conditions
),
}


_nedges_c4 = {'bulk': 36, 'mol': 6, 'isolated': 0}
_nedges_c4 = {'bulk': 36, 'mol': 6, 'isolated': 0, 'small_bulk': 18}


def get_atoms(
atoms_type: Literal['bulk', 'mol', 'isolated'],
atoms_type: Literal['bulk', 'mol', 'isolated', 'small_bulk'],
init_y_as: Literal['calc', 'info', 'none'],
):
"""
Expand Down Expand Up @@ -357,3 +373,104 @@ def test_7net_graph_dataset_batch_shape(a_types, init_ys, tmp_path):
), f'{k}: {type(graph[k])} is not an tensor'
assert graph[k].is_floating_point() == (dtype is float)
assert graph[k].shape == shape, f'{k} shape {graph[k].shape} != {shape}'


@pytest.mark.parametrize('atoms_type', ['bulk', 'mol', 'isolated', 'small_bulk'])
def test_graph_build_ase_and_matscipy(atoms_type):
atoms, _ = get_atoms(atoms_type, 'calc')
atoms.rattle()
pos = atoms.get_positions()
cell = np.array(atoms.get_cell())
pbc = atoms.get_pbc()

# graph build check
# ase graph build
edge_src_ase, edge_dst_ase, edge_vec_ase, shifts_ase = dl._graph_build_ase(
cutoff, pbc, cell, pos
)
# matscipy graph build
edge_src_matsci, edge_dst_matsci, edge_vec_matsci, shifts_matsci = (
dl._graph_build_matscipy(cutoff, pbc, cell, pos)
)

# sort the graph
sorted_indices_ase = np.lexsort(
(edge_vec_ase[:, 2], edge_vec_ase[:, 1], edge_vec_ase[:, 0])
)
sorted_indices_matsci = np.lexsort(
(edge_vec_matsci[:, 2], edge_vec_matsci[:, 1], edge_vec_matsci[:, 0])
)
sorted_vec_ase = edge_vec_ase[sorted_indices_ase]
sorted_vec_matsci = edge_vec_matsci[sorted_indices_matsci]
sorted_src_ase = edge_src_ase[sorted_indices_ase]
sorted_dst_ase = edge_dst_ase[sorted_indices_ase]
sorted_src_matsci = edge_src_matsci[sorted_indices_matsci]
sorted_dst_matsci = edge_dst_matsci[sorted_indices_matsci]
sorted_shift_ase = shifts_ase[sorted_indices_ase]
sorted_shift_matsci = shifts_matsci[sorted_indices_matsci]

# compare the result
assert np.allclose(sorted_vec_ase, sorted_vec_matsci)
assert np.array_equal(sorted_src_ase, sorted_src_matsci)
assert np.array_equal(sorted_dst_ase, sorted_dst_matsci)
assert np.array_equal(sorted_shift_ase, sorted_shift_matsci)

# energy test
model, _ = model_from_checkpoint(pretrained_name_to_path('7net-0_11July2024'))
model.eval()
model.set_is_batch_data(False)

# for ase energy
edge_idx_ase = np.array([edge_src_ase, edge_dst_ase])
atomic_numbers = atoms.get_atomic_numbers()
cell = np.array(cell)
vol = dl._correct_scalar(atoms.cell.volume)
if vol == 0:
vol = np.array(np.finfo(float).eps)

data_ase = {
KEY.NODE_FEATURE: atomic_numbers,
KEY.ATOMIC_NUMBERS: atomic_numbers,
KEY.POS: pos,
KEY.EDGE_IDX: edge_idx_ase,
KEY.EDGE_VEC: edge_vec_ase,
KEY.CELL: cell,
KEY.CELL_SHIFT: shifts_ase,
KEY.CELL_VOLUME: vol,
KEY.NUM_ATOMS: dl._correct_scalar(len(atomic_numbers)),
}
data_ase[KEY.INFO] = {}
atom_graph_data_ase = AtomGraphData.from_numpy_dict(data_ase)
output_ase = model(atom_graph_data_ase)
ase_pred_energy = output_ase[KEY.PRED_TOTAL_ENERGY]
ase_pred_force = output_ase[KEY.PRED_FORCE]
ase_pred_stress = output_ase[KEY.PRED_STRESS]

# for matsci energy
edge_idx_matsci = np.array([edge_src_matsci, edge_dst_matsci])
atomic_numbers = atoms.get_atomic_numbers()
cell = np.array(cell)
vol = dl._correct_scalar(atoms.cell.volume)
if vol == 0:
vol = np.array(np.finfo(float).eps)

data_matsci = {
KEY.NODE_FEATURE: atomic_numbers,
KEY.ATOMIC_NUMBERS: atomic_numbers,
KEY.POS: pos,
KEY.EDGE_IDX: edge_idx_matsci,
KEY.EDGE_VEC: edge_vec_matsci,
KEY.CELL: cell,
KEY.CELL_SHIFT: shifts_matsci,
KEY.CELL_VOLUME: vol,
KEY.NUM_ATOMS: dl._correct_scalar(len(atomic_numbers)),
}
data_matsci[KEY.INFO] = {}
atom_graph_data_matsci = AtomGraphData.from_numpy_dict(data_matsci)
output_matsci = model(atom_graph_data_matsci)
matsci_pred_energy = output_matsci[KEY.PRED_TOTAL_ENERGY]
matsci_pred_force = output_matsci[KEY.PRED_FORCE]
matsci_pred_stress = output_matsci[KEY.PRED_STRESS]
assert torch.equal(ase_pred_energy, matsci_pred_energy)
assert torch.allclose(ase_pred_force, matsci_pred_force, atol=1e-06)
assert torch.allclose(ase_pred_stress, matsci_pred_stress)
Loading