PyTorch implementation of FairGT [1].
python train_fairgt.py --gpuid 0 --dataset "nba" --hops 3 --pe_dim 7 --hidden_dim 256 --nhead 2 --nlayer 2
python train_fairgt.py --gpuid 0 --dataset "german" --hops 1 --pe_dim 7 --hidden_dim 128 --nhead 1 --nlayer 1
python train_fairgt.py --gpuid 0 --dataset "income" --hops 1 --pe_dim 2 --hidden_dim 16 --nhead 1 --nlayer 1
python train_fairgt.py --gpuid 0 --dataset "bail" --hops 3 --pe_dim 3 --hidden_dim 128 --nhead 2 --nlayer 2
python train_fairgt.py --gpuid 0 --dataset "credit" --hops 2 --pe_dim 8 --hidden_dim 64 --nhead 1 --nlayer 1
Please cite our paper if you use this code in your own work:
@INPROCEEDINGS{fairgt2024luo,
author={Luo, Renqiang and Huang, Huafei and Yu, Shuo and Zhang, Xiuzhen and Xia, Feng},
booktitle={Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)},
title={FairGT: A Fairness-aware Graph Transformer},
year={2024},
publisher={ijcai.org},
}