โก A VITS ONNX server designed for fast inference, supporting streaming and additional inference settings to enable model preference settings and optimize performance.
- Long Voice Generation, Support Streaming. ้ฟ่ฏญ้ณๆนๆฌกๆจ็ๅๅนถใ
- Automatic language type parsing for text, eliminating the need for language recognition segmentation. ่ชๅจ่ฏๅซ่ฏญ่จ็ฑปๅๅนถๅค็ไธๅใ
- Supports multiple audio formats, including ogg, wav, flac, and silk. ๅคๆ ผๅผ่ฟๅๅๅ ฅใ
- Multiple models, streaming inference. ๅคๆจกๅๅๅงๅใ
- Additional inference settings to enable model preference settings and optimize performance. ้ขๅค็ๆจ็่ฎพ็ฝฎ๏ผๅฏ็จๆจกๅๅๅฅฝ่ฎพ็ฝฎใ
- Auto Convert PTH to ONNX. ่ชๅจ่ฝฌๆขpthๅฐonnxใ
- Support for multiple languages, including Chinese, English, Japanese, and Korean. ๅค่ฏญ่จๅคๆจกๅๅๅนถๆฏๆ๏ผไปปๅกๆนๆฌกๅๅๅฐไธๅๆจกๅ๏ผใ
We offer out-of-the-box call systems.
client = VITS("http://127.0.0.1:9557")
res = client.generate_voice(model_id="model_01", text="ไฝ ๅฅฝ๏ผไธ็๏ผ", speaker_id=0, audio_type="wav",
length_scale=1.0, noise_scale=0.5, noise_scale_w=0.5, auto_parse=True)
with open("output.wav", "wb") as f:
for chunk in res.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
We recommend using a virtual environment to isolate the runtime environment. Because this project's dependencies may
potentially disrupt your dependency library, we recommend using pipenv
to manage the dependency package.
Configuration is in .env
, including the following fields:
VITS_SERVER_HOST=0.0.0.0
VITS_SERVER_PORT=9557
VITS_SERVER_RELOAD=false
# VITS_SERVER_WORKERS=1
# VITS_SERVER_INIT_CONFIG="https://....json"
# VITS_SERVER_INIT_MODEL="https://.....pth or onnx"
or you can use the following command to set the environment variable:
export VITS_SERVER_HOST="0.0.0.0"
export VITS_SERVER_PORT="9557"
export VITS_SERVER_RELOAD="false"
export VITS_DISABLE_GPU="false"
VITS_SERVER_RELOAD
means auto restart server when file changed.
apt-get update &&
apt-get install -y build-essential libsndfile1 vim gcc g++ cmake
apt install python3-pip
pip3 install pipenv
pipenv install # Create and install dependency packages
pipenv shell # Activate the virtual environment
python3 main.py # Run
# then ctrl+c exit
apt install npm
npm install pm2 -g
pm2 start pm2.json
# then the server will run in the background
and we have a one-click script to install pipenv
and npm
:
curl -LO https://raw.githubusercontent.com/LlmKira/VitsServer/main/deploy_script.sh && chmod +x deploy_script.sh && ./deploy_script.sh
we have docker pull sudoskys/vits-server:main
to docker hub.
you can also build from Dockerfile.
docker build -t <image-name> .
where <image-name>
is the name you want to give to the image. Then, use the following command to start the container:
docker run -d -p 9557:9557 -v <local-path>/vits_model:/app/model <image-name>
where <local-path>
is the local folder path you want to map to the /app/model directory in the container.
In the model
folder, place the model.pth
/ model.onnx
and corresponding model.json
files. If it is .pth
, it
will be automatically converted to .onnx
!
you can use .env
to set VITS_SERVER_INIT_CONFIG
and VITS_SERVER_INIT_MODEL
to download model files.
VITS_SERVER_INIT_CONFIG="https://....json"
VITS_SERVER_INIT_MODEL="https://.....pth?trace=233 or onnx?trace=233"
model
folder structure:
.
โโโ 1000_epochs.json
โโโ 1000_epochs.onnx
โโโ 1000_epochs.pth
โโโ 233_epochs.json
โโโ 233_epochs.onnx
โโโ 233_epochs.pth
Model ID
is 1000_epochs
and 233_epochs
.
when you put model files in the model
folder, you should restart the server.
You can add extra fields in the model configuration to obtain information such as the model name corresponding to the model ID through the API.
{
//...
"info": {
"name": "coco",
"description": "a vits model",
"author": "someone",
"cover": "https://xxx.com/xxx.jpg",
"email": "[email protected]"
},
"infer": {
"noise_scale": 0.667,
"length_scale": 1.0,
"noise_scale_w": 0.8
}
//....
}
infer
is the default(prefer) inference settings for the model.
info
is the model information.
You can access {your_base_url}/model/list?show_speaker=True&show_ms_config=True
to obtain detailed information about
model roles and configurations.
- Test Silk format
- Docker for automatic deployment
- Shell script for automatic deployment
We would like to acknowledge the contributions of the following projects in the development of this project: