Skip to content

Commit

Permalink
doc: manually URL encode single quote in URL to fix pdf build, fixes J…
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrikekre authored and LilithHafner committed Feb 22, 2022
1 parent 9ddbc52 commit 5205309
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion doc/src/manual/functions.md
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ and the `::Integer` specification means that it will only be callable when `n` i

Argument-type declarations **normally have no impact on performance**: regardless of what argument types (if any) are declared, Julia compiles a specialized version of the function for the actual argument types passed by the caller. For example, calling `fib(1)` will trigger the compilation of specialized version of `fib` optimized specifically for `Int` arguments, which is then re-used if `fib(7)` or `fib(15)` are called. (There are rare exceptions when an argument-type declaration can trigger additional compiler specializations; see: [Be aware of when Julia avoids specializing](@ref).) The most common reasons to declare argument types in Julia are, instead:

* **Dispatch:** As explained in [Methods](@ref), you can have different versions ("methods") of a function for different argument types, in which case the argument types are used to determine which implementation is called for which arguments. For example, you might implement a completely different algorithm `fib(x::Number) = ...` that works for any `Number` type by using [Binet's formula](https://en.wikipedia.org/wiki/Fibonacci_number#Binet's_formula) to extend it to non-integer values.
* **Dispatch:** As explained in [Methods](@ref), you can have different versions ("methods") of a function for different argument types, in which case the argument types are used to determine which implementation is called for which arguments. For example, you might implement a completely different algorithm `fib(x::Number) = ...` that works for any `Number` type by using [Binet's formula](https://en.wikipedia.org/wiki/Fibonacci_number#Binet%27s_formula) to extend it to non-integer values.
* **Correctness:** Type declarations can be useful if your function only returns correct results for certain argument types. For example, if we omitted argument types and wrote `fib(n) = n ≤ 2 ? one(n) : fib(n-1) + fib(n-2)`, then `fib(1.5)` would silently give us the nonsensical answer `1.0`.
* **Clarity:** Type declarations can serve as a form of documentation about the expected arguments.

Expand Down

0 comments on commit 5205309

Please sign in to comment.