Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for CIFAR10 Dataset in the DCGAN Module #1046

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 13 additions & 3 deletions src/pl_bolts/models/gans/dcgan/dcgan_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

if _TORCHVISION_AVAILABLE:
from torchvision import transforms as transform_lib
from torchvision.datasets import LSUN, MNIST
from torchvision.datasets import CIFAR10, LSUN, MNIST
else: # pragma: no cover
warn_missing_pkg("torchvision")

Expand All @@ -35,7 +35,7 @@ class DCGAN(LightningModule):
python dcgan_module.py --gpus 1

# cifar10
python dcgan_module.py --gpus 1 --dataset cifar10 --image_channels 3
python dcgan_module.py --gpus 1 --dataset cifar10

"""

Expand Down Expand Up @@ -174,7 +174,7 @@ def cli_main(args=None):

parser = ArgumentParser()
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--dataset", default="mnist", type=str, choices=["lsun", "mnist"])
parser.add_argument("--dataset", default="mnist", type=str, choices=["lsun", "mnist", "cifar10"])
parser.add_argument("--data_dir", default="./", type=str)
parser.add_argument("--image_size", default=64, type=int)
parser.add_argument("--num_workers", default=8, type=int)
Expand Down Expand Up @@ -202,6 +202,16 @@ def cli_main(args=None):
)
dataset = MNIST(root=script_args.data_dir, download=True, transform=transforms)
image_channels = 1
elif script_args.dataset == "cifar10":
transforms = transform_lib.Compose(
[
transform_lib.Resize(script_args.image_size),
transform_lib.ToTensor(),
transform_lib.Normalize((0.49139968, 0.48215827, 0.44653124), (0.24703233, 0.24348505, 0.26158768)),
]
)
dataset = CIFAR10(root=script_args.data_dir, download=True, transform=transforms)
image_channels = 3

dataloader = DataLoader(
dataset, batch_size=script_args.batch_size, shuffle=True, num_workers=script_args.num_workers
Expand Down