Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix aggregation metrics with zero tensors #1070

Merged
merged 7 commits into from
Jun 7, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Fixed

-
- Fixed aggregation metrics when input only contains zero ([#1070](https://github.com/PyTorchLightning/metrics/pull/1070))

-

Expand Down
1 change: 1 addition & 0 deletions tests/bases/test_aggregation.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ def test_nan_error(value, nan_strategy, metric_class):
(CatMetric, 2.0, _case1, torch.tensor([2.0, 2.0, 2.0, 2.0, 2.0])),
(CatMetric, "ignore", _case2, torch.tensor([1.0, 2.0, 4.0, 5.0])),
(CatMetric, 2.0, _case2, torch.tensor([1.0, 2.0, 2.0, 4.0, 5.0])),
(CatMetric, "ignore", torch.zeros(5), torch.zeros(5)),
],
)
def test_nan_expected(metric_class, nan_strategy, value, expected):
Expand Down
24 changes: 16 additions & 8 deletions torchmetrics/aggregation.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ class BaseAggregator(Metric):
value: Tensor
is_differentiable = None
higher_is_better = None
full_state_update = False

def __init__(
self,
Expand Down Expand Up @@ -116,6 +117,8 @@ class MaxMetric(BaseAggregator):
tensor(3.)
"""

full_state_update = True

def __init__(
self,
nan_strategy: Union[str, float] = "warn",
Expand All @@ -136,7 +139,7 @@ def update(self, value: Union[float, Tensor]) -> None: # type: ignore
dimensions will be flattened
"""
value = self._cast_and_nan_check_input(value)
if any(value.flatten()): # make sure tensor not empty
if value.numel(): # make sure tensor not empty
self.value = torch.max(self.value, torch.max(value))


Expand Down Expand Up @@ -165,6 +168,8 @@ class MinMetric(BaseAggregator):
tensor(1.)
"""

full_state_update = True

def __init__(
self,
nan_strategy: Union[str, float] = "warn",
Expand All @@ -185,7 +190,7 @@ def update(self, value: Union[float, Tensor]) -> None: # type: ignore
dimensions will be flattened
"""
value = self._cast_and_nan_check_input(value)
if any(value.flatten()): # make sure tensor not empty
if value.numel(): # make sure tensor not empty
self.value = torch.min(self.value, torch.min(value))


Expand Down Expand Up @@ -234,7 +239,8 @@ def update(self, value: Union[float, Tensor]) -> None: # type: ignore
dimensions will be flattened
"""
value = self._cast_and_nan_check_input(value)
self.value += value.sum()
if value.numel():
self.value += value.sum()


class CatMetric(BaseAggregator):
Expand Down Expand Up @@ -277,7 +283,7 @@ def update(self, value: Union[float, Tensor]) -> None: # type: ignore
dimensions will be flattened
"""
value = self._cast_and_nan_check_input(value)
if any(value.flatten()):
if value.numel():
self.value.append(value)

def compute(self) -> Tensor:
Expand Down Expand Up @@ -339,14 +345,16 @@ def update(self, value: Union[float, Tensor], weight: Union[float, Tensor] = 1.0
value = self._cast_and_nan_check_input(value)
weight = self._cast_and_nan_check_input(weight)

# broadcast weight to values shape
if not hasattr(torch, "broadcast_to"):
if value.numel() == 0:
return
# broadcast weight to value shape
if hasattr(torch, "broadcast_to"):
weight = torch.broadcast_to(weight, value.shape)
else:
if weight.shape == ():
weight = torch.ones_like(value) * weight
if weight.shape != value.shape:
raise ValueError("Broadcasting not supported on PyTorch <1.8")
else:
weight = torch.broadcast_to(weight, value.shape)

self.value += (value * weight).sum()
self.weight += weight.sum()
Expand Down