Skip to content

Commit

Permalink
Merge branch 'master' into bugfix/multiclass_jaccard
Browse files Browse the repository at this point in the history
  • Loading branch information
Borda authored Dec 13, 2022
2 parents 9bc9a17 + 6e2213a commit 89fe4fa
Show file tree
Hide file tree
Showing 10 changed files with 70 additions and 39 deletions.
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Changed

-
- Changed `update_count` and `update_called` from private to public methods ([#1370](https://github.com/Lightning-AI/metrics/pull/1370))


### Deprecated
Expand Down
8 changes: 4 additions & 4 deletions src/torchmetrics/detection/mean_ap.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,11 +40,11 @@
def compute_area(input: List[Any], iou_type: str = "bbox") -> Tensor:
"""Compute area of input depending on the specified iou_type.
Default output for empty input is torch.Tensor([])
Default output for empty input is :class:`~torch.Tensor`
"""
if len(input) == 0:

return torch.Tensor([])
return Tensor([])

if iou_type == "bbox":
return box_area(torch.stack(input))
Expand Down Expand Up @@ -124,7 +124,7 @@ class COCOMetricResults(BaseMetricResults):
)


def _segm_iou(det: List[Tuple[np.ndarray, np.ndarray]], gt: List[Tuple[np.ndarray, np.ndarray]]) -> torch.Tensor:
def _segm_iou(det: List[Tuple[np.ndarray, np.ndarray]], gt: List[Tuple[np.ndarray, np.ndarray]]) -> Tensor:
"""
Compute IOU between detections and ground-truths using mask-IOU. Based on pycocotools toolkit for mask_utils
Args:
Expand Down Expand Up @@ -431,7 +431,7 @@ def _move_list_states_to_cpu(self) -> None:
current_to_cpu = []
if isinstance(current_val, Sequence):
for cur_v in current_val:
# Cannot handle RLE as torch.Tensor
# Cannot handle RLE as Tensor
if not isinstance(cur_v, tuple):
cur_v = cur_v.to("cpu")
current_to_cpu.append(cur_v)
Expand Down
2 changes: 1 addition & 1 deletion src/torchmetrics/functional/image/gradients.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ def image_gradients(img: Tensor) -> Tuple[Tensor, Tensor]:
Raises:
TypeError:
If ``img`` is not of the type ``torch.Tensor``.
If ``img`` is not of the type :class:`~torch.Tensor`.
RuntimeError:
If ``img`` is not a 4D tensor.
Expand Down
18 changes: 9 additions & 9 deletions src/torchmetrics/functional/text/bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,11 +66,11 @@ def _get_embeddings_and_idf_scale(
user_forward_fn:
A user's own forward function used in a combination with ``user_model``. This function must
take ``user_model`` and a python dictionary of containing ``"input_ids"`` and ``"attention_mask"``
represented by ``torch.Tensor`` as an input and return the model's output represented by the single
``torch.Tensor``.
represented by :class:`~torch.Tensor` as an input and return the model's output represented by the single
:class:`~torch.Tensor`.
Return:
A tuple of ``torch.Tensor``s containing the model's embeddings and the normalized tokens IDF.
A tuple of :class:`~torch.Tensor`s containing the model's embeddings and the normalized tokens IDF.
When ``idf = False``, tokens IDF is not calculated, and a matrix of mean weights is returned instead.
For a single sentence, ``mean_weight = 1/seq_len``, where ``seq_len`` is a sum over the corresponding
``attention_mask``.
Expand Down Expand Up @@ -273,15 +273,15 @@ def bert_score(
user_tokenizer:
A user's own tokenizer used with the own model. This must be an instance with the ``__call__`` method.
This method must take an iterable of sentences (``List[str]``) and must return a python dictionary
containing ``"input_ids"`` and ``"attention_mask"`` represented by ``torch.Tensor``.
It is up to the user's model of whether ``"input_ids"`` is a ``torch.Tensor`` of input ids or embedding
vectors. his tokenizer must prepend an equivalent of ``[CLS]`` token and append an equivalent of ``[SEP]``
token as `transformers` tokenizer does.
containing ``"input_ids"`` and ``"attention_mask"`` represented by :class:`~torch.Tensor`.
It is up to the user's model of whether ``"input_ids"`` is a :class:`~torch.Tensor` of input ids
or embedding vectors. his tokenizer must prepend an equivalent of ``[CLS]`` token and append an equivalent
of ``[SEP]`` token as `transformers` tokenizer does.
user_forward_fn:
A user's own forward function used in a combination with ``user_model``.
This function must take ``user_model`` and a python dictionary of containing ``"input_ids"``
and ``"attention_mask"`` represented by ``torch.Tensor`` as an input and return the model's output
represented by the single ``torch.Tensor``.
and ``"attention_mask"`` represented by :class:`~torch.Tensor` as an input and return the model's output
represented by the single :class:`~torch.Tensor`.
verbose: An indication of whether a progress bar to be displayed during the embeddings' calculation.
idf: An indication of whether normalization using inverse document frequencies should be used.
device: A device to be used for calculation.
Expand Down
10 changes: 4 additions & 6 deletions src/torchmetrics/functional/text/helper_embedding_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,7 @@ def _check_shape_of_model_output(output: Tensor, input_ids: Tensor) -> None:
invalid_out_shape = len(output.shape) != 3 or output.shape[0] != bs or output.shape[1] != seq_len
if invalid_out_shape:
raise ValueError(
"The model output must be `torch.Tensor` of a shape `[batch_size, seq_len, model_dim]` "
"The model output must be `Tensor` of a shape `[batch_size, seq_len, model_dim]` "
f"i.e. [{bs}, {seq_len}. , `model_dim`], but got {output.shape}."
)

Expand Down Expand Up @@ -249,7 +249,7 @@ def _get_tokens_idf_default_value(self) -> float:

@staticmethod
def _set_of_tokens(input_ids: Tensor) -> Set:
"""Return set of tokens from the `input_ids` `torch.Tensor`."""
"""Return set of tokens from the `input_ids` :class:`~torch.Tensor`."""
return set(input_ids.tolist())


Expand All @@ -265,10 +265,8 @@ def __init__(
) -> None:
"""
Args:
input_ids:
Input ids (`torch.Tensor`).
attention_mask:
Attention mask (`torch.Tensor`).
input_ids: Input indexes
attention_mask: Attention mask
idf:
An indication of whether calculate token inverse document frequencies to weight the model embeddings.
tokens_idf:
Expand Down
24 changes: 18 additions & 6 deletions src/torchmetrics/metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,9 +141,20 @@ def __init__(

@property
def _update_called(self) -> bool:
# Needed for lightning integration
# TODO: this is needed for internal lightning, remove after v0.12 and update on lightning side
return self._update_count > 0

@property
def update_called(self) -> bool:
"""Returns `True` if `update` or `forward` has been called initialization or last `reset`."""
return self._update_count > 0

@property
def update_count(self) -> int:
"""Get the number of times `update` and/or `forward` has been called since initialization or last
`reset`."""
return self._update_count

def add_state(
self,
name: str,
Expand All @@ -155,8 +166,8 @@ def add_state(
Args:
name: The name of the state variable. The variable will then be accessible at ``self.name``.
default: Default value of the state; can either be a ``torch.Tensor`` or an empty list. The state will be
reset to this value when ``self.reset()`` is called.
default: Default value of the state; can either be a :class:`~torch.Tensor` or an empty list.
The state will be reset to this value when ``self.reset()`` is called.
dist_reduce_fx (Optional): Function to reduce state across multiple processes in distributed mode.
If value is ``"sum"``, ``"mean"``, ``"cat"``, ``"min"`` or ``"max"`` we will use ``torch.sum``,
``torch.mean``, ``torch.cat``, ``torch.min`` and ``torch.max``` respectively, each with argument
Expand All @@ -171,9 +182,10 @@ def add_state(
The metric states would be synced as follows
- If the metric state is ``torch.Tensor``, the synced value will be a stacked ``torch.Tensor`` across
the process dimension if the metric state was a ``torch.Tensor``. The original ``torch.Tensor`` metric
state retains dimension and hence the synchronized output will be of shape ``(num_process, ...)``.
- If the metric state is :class:`~torch.Tensor`, the synced value will be a stacked :class:`~torch.Tensor`
across the process dimension if the metric state was a :class:`~torch.Tensor`. The original
:class:`~torch.Tensor` metric state retains dimension and hence the synchronized output will be of shape
``(num_process, ...)``.
- If the metric state is a ``list``, the synced value will be a ``list`` containing the
combined elements from all processes.
Expand Down
13 changes: 7 additions & 6 deletions src/torchmetrics/text/bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,14 +59,15 @@ class BERTScore(Metric):
user_tokenizer:
A user's own tokenizer used with the own model. This must be an instance with the `__call__` method.
This method must take an iterable of sentences (`List[str]`) and must return a python dictionary
containing `"input_ids"` and `"attention_mask"` represented by `torch.Tensor`. It is up to the user's model
of whether `"input_ids"` is a `torch.Tensor` of input ids or embedding vectors.
This tokenizer must prepend an equivalent of `[CLS]` token and append an equivalent of `[SEP]` token
as `transformers` tokenizer does.
containing `"input_ids"` and `"attention_mask"` represented by :class:`~torch.Tensor`.
It is up to the user's model of whether `"input_ids"` is a :class:`~torch.Tensor` of input ids or embedding
vectors. This tokenizer must prepend an equivalent of `[CLS]` token and append an equivalent of `[SEP]`
token as `transformers` tokenizer does.
user_forward_fn:
A user's own forward function used in a combination with `user_model`. This function must take `user_model`
and a python dictionary of containing `"input_ids"` and `"attention_mask"` represented by `torch.Tensor`
as an input and return the model's output represented by the single `torch.Tensor`.
and a python dictionary of containing `"input_ids"` and `"attention_mask"` represented
by :class:`~torch.Tensor` as an input and return the model's output represented by the single
:class:`~torch.Tensor`.
verbose: An indication of whether a progress bar to be displayed during the embeddings' calculation.
idf: An indication whether normalization using inverse document frequencies should be used.
device: A device to be used for calculation.
Expand Down
4 changes: 2 additions & 2 deletions tests/unittests/bases/test_collections.py
Original file line number Diff line number Diff line change
Expand Up @@ -423,7 +423,7 @@ def test_check_compute_groups_correctness(self, metrics, expected, preds, target
m2.update(preds, target)

for _, member in m.items():
assert member._update_called
assert member.update_called

assert m.compute_groups == expected
assert m2.compute_groups == {}
Expand All @@ -433,7 +433,7 @@ def test_check_compute_groups_correctness(self, metrics, expected, preds, target
m2.update(preds, target)

for _, member in m.items():
assert member._update_called
assert member.update_called

# compare results for correctness
res_cg = m.compute()
Expand Down
20 changes: 20 additions & 0 deletions tests/unittests/bases/test_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -476,3 +476,23 @@ def test_compute_on_cpu_arg_forward(method):
val = metric.compute()
assert all(str(v.device) == "cpu" for v in val)
assert all(torch.allclose(v, x.cpu()) for v in val)


@pytest.mark.parametrize("method", ["forward", "update"])
@pytest.mark.parametrize("metric", [DummyMetricSum, DummyListMetric])
def test_update_properties(metric, method):
m = metric()
x = torch.randn(
1,
).squeeze()
for i in range(10):
if method == "update":
m.update(x)
if method == "forward":
_ = m(x)
assert m.update_called
assert m.update_count == i + 1

m.reset()
assert not m.update_called
assert m.update_count == 0
8 changes: 4 additions & 4 deletions tests/unittests/retrieval/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,14 +41,14 @@


def get_group_indexes(indexes: Union[Tensor, np.ndarray]) -> List[Union[Tensor, np.ndarray]]:
"""Given an integer `torch.Tensor` or `np.ndarray` `indexes`, return a `torch.Tensor` or `np.ndarray` of
indexes for each different value in `indexes`.
"""Given an integer :class:`~torch.Tensor` or `np.ndarray` `indexes`, return a :class:`~torch.Tensor` or
`np.ndarray` of indexes for each different value in `indexes`.
Args:
indexes: a `torch.Tensor` or `np.ndarray` of integers
indexes: a :class:`~torch.Tensor` or `np.ndarray` of integers
Return:
A list of integer `torch.Tensor`s or `np.ndarray`s
A list of integer :class:`~torch.Tensor`s or `np.ndarray`s
Example:
>>> indexes = torch.tensor([0, 0, 0, 1, 1, 1, 1])
Expand Down

0 comments on commit 89fe4fa

Please sign in to comment.