Skip to content

Commit

Permalink
Add plotting 8/n (#1600)
Browse files Browse the repository at this point in the history
Co-authored-by: Jirka Borovec <[email protected]>
  • Loading branch information
SkafteNicki and Borda authored Mar 10, 2023
1 parent 5682c22 commit 632e8e6
Show file tree
Hide file tree
Showing 10 changed files with 439 additions and 18 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
[#1581](https://github.com/Lightning-AI/metrics/pull/1581),
[#1585](https://github.com/Lightning-AI/metrics/pull/1585),
[#1593](https://github.com/Lightning-AI/metrics/pull/1593),
[#1600](https://github.com/Lightning-AI/metrics/pull/1600),
)


Expand Down
1 change: 1 addition & 0 deletions requirements/docs.txt
Original file line number Diff line number Diff line change
Expand Up @@ -16,3 +16,4 @@ sphinx-copybutton>=0.3
-r visual.txt
-r audio.txt
-r detection.txt
-r image.txt
61 changes: 58 additions & 3 deletions src/torchmetrics/image/fid.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from typing import Any, List, Optional, Union
from typing import Any, List, Optional, Sequence, Union

import numpy as np
import torch
Expand All @@ -22,7 +22,11 @@

from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_info
from torchmetrics.utilities.imports import _SCIPY_AVAILABLE, _TORCH_FIDELITY_AVAILABLE
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _SCIPY_AVAILABLE, _TORCH_FIDELITY_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["FrechetInceptionDistance.plot"]

if _TORCH_FIDELITY_AVAILABLE:
from torch_fidelity.feature_extractor_inceptionv3 import FeatureExtractorInceptionV3 as _FeatureExtractorInceptionV3
Expand All @@ -31,7 +35,7 @@
class _FeatureExtractorInceptionV3(Module):
pass

__doctest_skip__ = ["FrechetInceptionDistance", "FID"]
__doctest_skip__ = ["FrechetInceptionDistance", "FrechetInceptionDistance.plot"]


if _SCIPY_AVAILABLE:
Expand Down Expand Up @@ -303,3 +307,54 @@ def reset(self) -> None:
self.real_features_num_samples = real_features_num_samples
else:
super().reset()

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image.fid import FrechetInceptionDistance
>>> imgs_dist1 = torch.randint(0, 200, (100, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = torch.randint(100, 255, (100, 3, 299, 299), dtype=torch.uint8)
>>> metric = FrechetInceptionDistance(feature=64)
>>> metric.update(imgs_dist1, real=True)
>>> metric.update(imgs_dist2, real=False)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image.fid import FrechetInceptionDistance
>>> imgs_dist1 = lambda: torch.randint(0, 200, (100, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = lambda: torch.randint(100, 255, (100, 3, 299, 299), dtype=torch.uint8)
>>> metric = FrechetInceptionDistance(feature=64)
>>> values = [ ]
>>> for _ in range(3):
... metric.update(imgs_dist1(), real=True)
... metric.update(imgs_dist2(), real=False)
... values.append(metric.compute())
... metric.reset()
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
54 changes: 51 additions & 3 deletions src/torchmetrics/image/inception.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Tuple, Union
from typing import Any, List, Optional, Sequence, Tuple, Union

import torch
from torch import Tensor
Expand All @@ -21,9 +21,14 @@
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _TORCH_FIDELITY_AVAILABLE
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCH_FIDELITY_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

__doctest_requires__ = {("InceptionScore", "IS"): ["torch_fidelity"]}
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["InceptionScore.plot"]


__doctest_requires__ = {("InceptionScore", "InceptionScore.plot"): ["torch_fidelity"]}


class InceptionScore(Metric):
Expand Down Expand Up @@ -162,3 +167,46 @@ def compute(self) -> Tuple[Tensor, Tensor]:

# return mean and std
return kl.mean(), kl.std()

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image.inception import InceptionScore
>>> metric = InceptionScore()
>>> metric.update(torch.randint(0, 255, (50, 3, 299, 299), dtype=torch.uint8))
>>> fig_, ax_ = metric.plot() # the returned plot only shows the mean value by default
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image.inception import InceptionScore
>>> metric = InceptionScore()
>>> values = [ ]
>>> for _ in range(3):
... # we index by 0 such that only the mean value is plotted
... values.append(metric(torch.randint(0, 255, (50, 3, 299, 299), dtype=torch.uint8))[0])
>>> fig_, ax_ = metric.plot(values)
"""
val = val or self.compute()[0] # by default we select the mean to plot
return self._plot(val, ax)
60 changes: 57 additions & 3 deletions src/torchmetrics/image/kid.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Tuple, Union
from typing import Any, List, Optional, Sequence, Tuple, Union

import torch
from torch import Tensor
Expand All @@ -21,9 +21,13 @@
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _TORCH_FIDELITY_AVAILABLE
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE, _TORCH_FIDELITY_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

__doctest_requires__ = {("KernelInceptionDistance", "KID"): ["torch_fidelity"]}
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["KernelInceptionDistance.plot"]

__doctest_requires__ = {("KernelInceptionDistance", "KernelInceptionDistance.plot"): ["torch_fidelity"]}


def maximum_mean_discrepancy(k_xx: Tensor, k_xy: Tensor, k_yy: Tensor) -> Tensor:
Expand Down Expand Up @@ -274,3 +278,53 @@ def reset(self) -> None:
self._defaults["real_features"] = value
else:
super().reset()

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image.kid import KernelInceptionDistance
>>> imgs_dist1 = torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = torch.randint(100, 255, (30, 3, 299, 299), dtype=torch.uint8)
>>> metric = KernelInceptionDistance(subsets=3, subset_size=20)
>>> metric.update(imgs_dist1, real=True)
>>> metric.update(imgs_dist2, real=False)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image.kid import KernelInceptionDistance
>>> imgs_dist1 = lambda: torch.randint(0, 200, (30, 3, 299, 299), dtype=torch.uint8)
>>> imgs_dist2 = lambda: torch.randint(100, 255, (30, 3, 299, 299), dtype=torch.uint8)
>>> metric = KernelInceptionDistance(subsets=3, subset_size=20)
>>> values = [ ]
>>> for _ in range(3):
... metric.update(imgs_dist1(), real=True)
... metric.update(imgs_dist2(), real=False)
... values.append(metric.compute()[0])
... metric.reset()
>>> fig_, ax_ = metric.plot(values)
"""
val = val or self.compute()[0] # by default we select the mean to plot
return self._plot(val, ax)
53 changes: 49 additions & 4 deletions src/torchmetrics/image/lpip.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Any, List
from typing import Any, List, Optional, Sequence, Union

import torch
from torch import Tensor
Expand All @@ -21,7 +21,11 @@

from torchmetrics.metric import Metric
from torchmetrics.utilities.checks import _SKIP_SLOW_DOCTEST, _try_proceed_with_timeout
from torchmetrics.utilities.imports import _LPIPS_AVAILABLE
from torchmetrics.utilities.imports import _LPIPS_AVAILABLE, _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity.plot"]

if _LPIPS_AVAILABLE:
from lpips import LPIPS as _LPIPS
Expand All @@ -30,13 +34,13 @@ def _download_lpips() -> None:
_LPIPS(pretrained=True, net="vgg")

if _SKIP_SLOW_DOCTEST and not _try_proceed_with_timeout(_download_lpips):
__doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity", "LPIPS"]
__doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity", "LearnedPerceptualImagePatchSimilarity.plot"]
else:

class _LPIPS(Module):
pass

__doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity", "LPIPS"]
__doctest_skip__ = ["LearnedPerceptualImagePatchSimilarity", "LearnedPerceptualImagePatchSimilarity.plot"]


class NoTrainLpips(_LPIPS):
Expand Down Expand Up @@ -167,3 +171,44 @@ def compute(self) -> Tensor:
if self.reduction == "sum":
return self.sum_scores
return None

def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
>>> metric = LearnedPerceptualImagePatchSimilarity()
>>> metric.update(torch.rand(10, 3, 100, 100), torch.rand(10, 3, 100, 100))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
>>> metric = LearnedPerceptualImagePatchSimilarity()
>>> values = [ ]
>>> for _ in range(3):
... values.append(metric(torch.rand(10, 3, 100, 100), torch.rand(10, 3, 100, 100)))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
Loading

0 comments on commit 632e8e6

Please sign in to comment.