Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove deprecated on_{save,load}_checkpoint signature #8697

Merged
merged 7 commits into from
Aug 22, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,12 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Removed the deprecated `optimizer_idx` from `training_step` as an accepted argument in manual optimization ([#8576](https://github.com/PyTorchLightning/pytorch-lightning/pull/8576))


- Removed support for the deprecated `on_save_checkpoint` signature. The hook now takes a `checkpoint` positional parameter ([#8697](https://github.com/PyTorchLightning/pytorch-lightning/pull/8697))


- Removed support for the deprecated `on_load_checkpoint` signature. The hook now takes a `pl_module` positional parameter ([#8697](https://github.com/PyTorchLightning/pytorch-lightning/pull/8697))


- Removed the deprecated `save_function` property in `ModelCheckpoint` ([#8680](https://github.com/PyTorchLightning/pytorch-lightning/pull/8680))


Expand Down
4 changes: 3 additions & 1 deletion pytorch_lightning/callbacks/early_stopping.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,9 @@ def on_save_checkpoint(
"patience": self.patience,
}

def on_load_checkpoint(self, callback_state: Dict[str, Any]) -> None:
def on_load_checkpoint(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", callback_state: Dict[str, Any]
) -> None:
self.wait_count = callback_state["wait_count"]
self.stopped_epoch = callback_state["stopped_epoch"]
self.best_score = callback_state["best_score"]
Expand Down
4 changes: 3 additions & 1 deletion pytorch_lightning/callbacks/timer.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,9 @@ def on_save_checkpoint(
) -> Dict[str, Any]:
return {"time_elapsed": {stage.value: self.time_elapsed(stage) for stage in list(RunningStage)}}

def on_load_checkpoint(self, callback_state: Dict[str, Any]) -> None:
def on_load_checkpoint(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", callback_state: Dict[str, Any]
) -> None:
time_elapsed = callback_state.get("time_elapsed", {})
self._offset = time_elapsed.get(RunningStage.TRAINING.value, 0)

Expand Down
19 changes: 0 additions & 19 deletions pytorch_lightning/core/saving.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,25 +212,6 @@ def _load_model_state(cls, checkpoint: Dict[str, Any], strict: bool = True, **cl

return model

def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
"""
Do something with the checkpoint.
Gives model a chance to load something before ``state_dict`` is restored.

Args:
checkpoint: A dictionary with variables from the checkpoint.
"""

def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
"""
Give the model a chance to add something to the checkpoint.
``state_dict`` is already there.

Args:
checkpoint: A dictionary in which you can save variables to save in a checkpoint.
Contents need to be pickleable.
"""

carmocca marked this conversation as resolved.
Show resolved Hide resolved
# -------------------------
# OPTIONAL HOOKS
# -------------------------
Expand Down
35 changes: 4 additions & 31 deletions pytorch_lightning/trainer/callback_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,13 @@

from abc import ABC
from copy import deepcopy
from inspect import signature
from typing import Any, Callable, Dict, List, Optional, Type, Union
from typing import Any, Dict, List, Optional, Type, Union

import torch

import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities import rank_zero_deprecation, rank_zero_warn
from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.utilities.types import STEP_OUTPUT


Expand Down Expand Up @@ -237,29 +236,11 @@ def on_keyboard_interrupt(self):
for callback in self.callbacks:
callback.on_keyboard_interrupt(self, self.lightning_module)

@staticmethod
def __is_old_signature_on_save_checkpoint(fn: Callable) -> bool:
parameters = list(signature(fn).parameters)
return len(parameters) == 2 and parameters[0] != "args"

@staticmethod
def __is_old_signature_on_load_checkpoint(fn: Callable) -> bool:
parameters = list(signature(fn).parameters)
return len(parameters) == 1 and parameters[0] != "args"

def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> Dict[str, dict]:
"""Called when saving a model checkpoint."""
callback_states = {}
for callback in self.callbacks:
if self.__is_old_signature_on_save_checkpoint(callback.on_save_checkpoint):
rank_zero_deprecation(
"`Callback.on_save_checkpoint` signature has changed in v1.3."
" A `checkpoint` parameter has been added."
" Support for the old signature will be removed in v1.5"
)
state = callback.on_save_checkpoint(self, self.lightning_module)
else:
state = callback.on_save_checkpoint(self, self.lightning_module, checkpoint)
state = callback.on_save_checkpoint(self, self.lightning_module, checkpoint)
if state:
callback_states[callback.state_id] = state
return callback_states
Expand Down Expand Up @@ -289,15 +270,7 @@ def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
state = callback_states.get(callback.state_id, callback_states.get(callback._legacy_state_id))
if state:
state = deepcopy(state)
if self.__is_old_signature_on_load_checkpoint(callback.on_load_checkpoint):
rank_zero_deprecation(
"`Callback.on_load_checkpoint` signature has changed in v1.3."
" `trainer` and `pl_module` parameters have been added."
" Support for the old signature will be removed in v1.5"
)
callback.on_load_checkpoint(state)
else:
callback.on_load_checkpoint(self, self.lightning_module, state)
callback.on_load_checkpoint(self, self.lightning_module, state)

def on_before_backward(self, loss: torch.Tensor) -> None:
"""Called before ``loss.backward()``."""
Expand Down
102 changes: 1 addition & 101 deletions tests/deprecated_api/test_remove_1-5.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test deprecated functionality which will be removed in v1.5.0"""
from typing import Any, Dict

import pytest

from pytorch_lightning import Callback, Trainer
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.core.decorators import auto_move_data
from pytorch_lightning.plugins import DeepSpeedPlugin
Expand All @@ -27,104 +25,6 @@
from tests.helpers.utils import no_warning_call


def test_v1_5_0_old_callback_on_save_checkpoint(tmpdir):
class OldSignature(Callback):
def on_save_checkpoint(self, trainer, pl_module):
...

model = BoringModel()
trainer_kwargs = {"default_root_dir": tmpdir, "checkpoint_callback": False, "max_epochs": 1}
filepath = tmpdir / "test.ckpt"

trainer = Trainer(**trainer_kwargs, callbacks=[OldSignature()])
trainer.fit(model)

with pytest.deprecated_call(match="old signature will be removed in v1.5"):
trainer.save_checkpoint(filepath)

class NewSignature(Callback):
def on_save_checkpoint(self, trainer, pl_module, checkpoint):
...

class ValidSignature1(Callback):
def on_save_checkpoint(self, trainer, *args):
...

class ValidSignature2(Callback):
def on_save_checkpoint(self, *args):
...

trainer.callbacks = [NewSignature(), ValidSignature1(), ValidSignature2()]
with no_warning_call(DeprecationWarning):
trainer.save_checkpoint(filepath)


class BaseSignatureOnLoadCheckpoint(Callback):
def __init__(self):
self.on_load_checkpoint_called = False


class OldSignatureOnLoadCheckpoint(BaseSignatureOnLoadCheckpoint):
def on_save_checkpoint(self, *args) -> Dict[str, Any]:
return {"a": 0}

def on_load_checkpoint(self, callback_state) -> None:
assert callback_state == {"a": 0}
self.on_load_checkpoint_called = True


class NewSignatureOnLoadCheckpoint(BaseSignatureOnLoadCheckpoint):
def on_save_checkpoint(self, trainer, pl_module, checkpoint) -> dict:
return {"something": "something"}

def on_load_checkpoint(self, trainer, pl_module, checkpoint):
assert checkpoint == {"something": "something"}
self.on_load_checkpoint_called = True


class ValidSignature2OnLoadCheckpoint(BaseSignatureOnLoadCheckpoint):
def on_save_checkpoint(self, trainer, pl_module, checkpoint) -> dict:
return {"something": "something"}

def on_load_checkpoint(self, *args):
assert len(args) == 3
self.on_load_checkpoint_called = True


def test_v1_5_0_old_callback_on_load_checkpoint(tmpdir):

model = BoringModel()
trainer_kwargs = {"default_root_dir": tmpdir, "max_steps": 1}
chk = ModelCheckpoint(save_last=True)
trainer = Trainer(**trainer_kwargs, callbacks=[OldSignatureOnLoadCheckpoint(), chk])
trainer.fit(model)

with pytest.deprecated_call(match="old signature will be removed in v1.5"):
trainer_kwargs["max_steps"] = 2
cb = OldSignatureOnLoadCheckpoint()
trainer = Trainer(**trainer_kwargs, callbacks=cb, resume_from_checkpoint=chk.last_model_path)
trainer.fit(model)
assert cb.on_load_checkpoint_called

class ValidSignature1(BaseSignatureOnLoadCheckpoint):
carmocca marked this conversation as resolved.
Show resolved Hide resolved
def on_load_checkpoint(self, trainer, *args):
assert len(args) == 2
self.on_load_checkpoint_called = True

model = BoringModel()
chk = ModelCheckpoint(save_last=True)
trainer = Trainer(
**trainer_kwargs,
callbacks=[NewSignatureOnLoadCheckpoint(), ValidSignature1(), ValidSignature2OnLoadCheckpoint(), chk]
)
with no_deprecated_call(match="old signature will be removed in v1.5"):
trainer.fit(model)

trainer = Trainer(**trainer_kwargs, resume_from_checkpoint=chk.last_model_path)
with no_deprecated_call(match="old signature will be removed in v1.5"):
trainer.fit(model)


def test_v1_5_0_legacy_profiler_argument():
with pytest.deprecated_call(match="renamed to `record_functions` in v1.3"):
PyTorchProfiler(profiled_functions=[])
Expand Down