Skip to content

Commit

Permalink
Fix sanity check for RichProgressBar (#10913)
Browse files Browse the repository at this point in the history
  • Loading branch information
kaushikb11 authored Dec 15, 2021
1 parent 23807c2 commit 5eecdca
Show file tree
Hide file tree
Showing 3 changed files with 26 additions and 1 deletion.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -261,6 +261,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Fixed

- Fixed running sanity check with `RichProgressBar` ([#10913](https://github.com/PyTorchLightning/pytorch-lightning/pull/10913))


- Fixed support for `CombinedLoader` while checking for warning raised with eval dataloaders ([#10994](https://github.com/PyTorchLightning/pytorch-lightning/pull/10994))


Expand Down
3 changes: 2 additions & 1 deletion pytorch_lightning/callbacks/progress/rich_progress.py
Original file line number Diff line number Diff line change
Expand Up @@ -334,7 +334,8 @@ def on_sanity_check_start(self, trainer, pl_module):

def on_sanity_check_end(self, trainer, pl_module):
super().on_sanity_check_end(trainer, pl_module)
self._update(self.val_sanity_progress_bar_id, visible=False)
if self.progress is not None:
self.progress.update(self.val_sanity_progress_bar_id, advance=0, visible=False)
self.refresh()

def on_train_epoch_start(self, trainer, pl_module):
Expand Down
21 changes: 21 additions & 0 deletions tests/callbacks/test_rich_progress_bar.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,3 +201,24 @@ def test_rich_progress_bar_refresh_rate(progress_update, tmpdir, refresh_rate, e
trainer.fit(model)

assert progress_update.call_count == expected_call_count


@RunIf(rich=True)
@pytest.mark.parametrize("limit_val_batches", (1, 5))
def test_rich_progress_bar_num_sanity_val_steps(tmpdir, limit_val_batches: int):
model = BoringModel()

progress_bar = RichProgressBar()
num_sanity_val_steps = 3

trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=num_sanity_val_steps,
limit_train_batches=1,
limit_val_batches=limit_val_batches,
max_epochs=1,
callbacks=progress_bar,
)

trainer.fit(model)
assert progress_bar.progress.tasks[0].completed == min(num_sanity_val_steps, limit_val_batches)

0 comments on commit 5eecdca

Please sign in to comment.