Skip to content

Commit

Permalink
update readme and contribution v1.0 (#216)
Browse files Browse the repository at this point in the history
* update readme and contribution

* update readme and contribution
  • Loading branch information
aptx1231 authored Nov 23, 2021
1 parent 9670c6a commit 2787949
Show file tree
Hide file tree
Showing 3 changed files with 65 additions and 10 deletions.
11 changes: 9 additions & 2 deletions contribution_list.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

The model reproduction work in the library has been assisted by several developers. The specific contribution list is shown below.

For a list of all models reproduced in LibCity, see [Docs](https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/model.html), where you can see the abbreviation of the model and the corresponding papers and citations.

| Task | Model | Contributor |
| ------ | ------------------------------------------------------------ | ------ |
|Time Series Prediction|HA|[XBR-1111](https://github.com/XBR-1111), [aptx1231](https://github.com/aptx1231)|
Expand Down Expand Up @@ -43,14 +45,16 @@ The model reproduction work in the library has been assisted by several develope
| | GTS | [aptx1231](https://github.com/aptx1231), [buaacjw](https://github.com/buaacjw), [t123yh](https://github.com/t123yh), [h9tyf](https://github.com/h9tyf) |
| | GMAN | [huangjiawei128](https://github.com/huangjiawei128), [fry412](https://github.com/fry412) |
| | ATDM | [zhangjiahui-buaa](https://github.com/zhangjiahui-buaa) |
| | HGCN | [XBR-1111](https://github.com/XBR-1111), [Matty-blu](https://github.com/Matty-blu), [nan0054](https://github.com/nan0054) |
| | HGCN | [XBR-1111](https://github.com/XBR-1111), [Matty-blu](https://github.com/Matty-blu), [nan0054](https://github.com/nan0054), [PotassiumWings](https://github.com/PotassiumWings) |
| | STAGGCN | [a-l-r](https://github.com/a-l-r1), [aptx1231](https://github.com/aptx1231) |
| | DKFN | [a-l-r](https://github.com/a-l-r1), [aptx1231](https://github.com/aptx1231) |
| | DKFN | [a-l-r](https://github.com/a-l-r1), [aptx1231](https://github.com/aptx1231), [NickHan-cs](https://github.com/NickHan-cs) |
| | STTN | [NickHan-cs](https://github.com/NickHan-cs) |
|On-Demand Service Prediction|CCRNN|[aptx1231](https://github.com/aptx1231)|
| |STG2Seq|[aptx1231](https://github.com/aptx1231), [Stevezzy](https://github.com/Stevezzy)|
||DMVSTNet|[l782993610](https://github.com/l782993610), [WANDY666](https://github.com/WANDY666)|
|OD Matrix Prediction|GEML|[l782993610](https://github.com/l782993610)|
||CSTN|[l782993610](https://github.com/l782993610)|
|Traffic Accidents Prediction|GSNet|[excelsior399](https://github.com/excelsior399)|
| Trajectory Next-Location Prediction | FPMC | [WenMellors](https://github.com/WenMellors) |
| | RNN-1 | [WenMellors](https://github.com/WenMellors) |
| | STRNN | [BugMakerzzz](https://github.com/BugMakerzzz), [xcw-1010](https://github.com/xcw-1010), [WenMellors](https://github.com/WenMellors) |
Expand All @@ -62,9 +66,12 @@ The model reproduction work in the library has been assisted by several develope
||LSTPM|[ssdrywz](https://github.com/ssdrywz), [Jerry18231174](https://github.com/Jerry18231174), [WenMellors](https://github.com/WenMellors)|
||GeoSAN|[Reinhard-Tichy](https://github.com/Reinhard-Tichy)|
||HSTLSTM|[Creddittale](https://github.com/Creddittale), [WenMellors](https://github.com/WenMellors)|
|Estimated Time of Arrival|DeepTTE|[NickHan-cs](https://github.com/NickHan-cs)|
|Map Matching|STMatching|[XBR-1111](https://github.com/XBR-1111)|
||IVMM|[excelsior399](https://github.com/excelsior399)|
||HMMM|[XBR-1111](https://github.com/XBR-1111)|
|Road Network Representation Learning|ChebConv|[aptx1231](https://github.com/aptx1231)|
||LINE|[l782993610](https://github.com/l782993610)|



32 changes: 28 additions & 4 deletions readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,21 +10,22 @@ LibCity is a unified, comprehensive, and extensible library, which provides rese

LibCity currently supports the following tasks:

* Time Series Prediction
* Traffic State Prediction
* Traffic Flow Prediction
* Traffic Speed Prediction
* On-Demand Service Prediction
* OD Matrix Prediction
* Origin-destination Matrix Prediction
* Traffic Accidents Prediction
* Trajectory Next-Location Prediction
* Estimated Time of Arrival
* Map Matching
* Road Network Representation Learning

## Features

* **Unified**: LibCity builds a systematic pipeline to implement, use and evaluate traffic prediction models in a unified platform. We design basic spatial-temporal data storage, unified model instantiation interfaces, and standardized evaluation procedure.

* **Comprehensive**: 54 models covering 8 traffic prediction tasks have been reproduced to form a comprehensive model warehouse. Meanwhile, LibCity collects 32 commonly used datasets of different sources and implements a series of commonly used evaluation metrics and strategies for performance evaluation.
* **Comprehensive**: 60 models covering 9 traffic prediction tasks have been reproduced to form a comprehensive model warehouse. Meanwhile, LibCity collects 35 commonly used datasets of different sources and implements a series of commonly used evaluation metrics and strategies for performance evaluation.

* **Extensible**: LibCity enables a modular design of different components, allowing users to flexibly insert customized components into the library. Therefore, new researchers can easily develop new models with the support of LibCity.

Expand Down Expand Up @@ -67,13 +68,36 @@ This script will run the GRU model on the METR_LA dataset for traffic state pred

More details is represented in [Docs](https://bigscity-libcity-docs.readthedocs.io/en/latest/get_started/quick_start.html).

## Reproduced Model List

For a list of all models reproduced in LibCity, see [Docs](https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/model.html), where you can see the abbreviation of the model and the corresponding papers and citations.

## Tutorial

In order to facilitate users to use LibCity, we provide users with some tutorials:

- We gave lectures on both ACM SIGSPATIAL 2021 Main Track and Local Track. For related lecture videos and Slides, please see our [HomePage](https://libcity.ai/#/tutorial) (Chinese and English).
- We provide entry-level tutorials (in Chinese and English) in the documentation.
- [Install and quick start](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/install_quick_start.html) & [安装和快速上手](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/install_quick_start.html)
- [Run an existing model in LibCity](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/run_model.html) & [运行LibCity中已复现的模型](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/run_model.html)
- [Add a new model to LibCity](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/add_model.html) & [在LibCity中添加新模型](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/add_model.html)
- [Tuning the model with automatic tool](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/hyper_tune.html) & [使用自动化工具调参](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/hyper_tune.html)
- [Visualize Atomic Files](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/data_visualization.html) & [原子文件可视化](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/data_visualization.html)
- In order to facilitate the use of domestic users in China, we provide an introductory tutorial (in Chinese) on Zhihu.
- [LibCity:一个统一、全面、可扩展的交通预测算法库](https://zhuanlan.zhihu.com/p/401186930)
- [LibCity入门教程(1)——安装与快速上手](https://zhuanlan.zhihu.com/p/400814990)
- [LibCity入门教程(2)——运行LibCity中已复现的模型](https://zhuanlan.zhihu.com/p/400819354)
- [LibCity入门教程(3)——在LibCity中添加新模型](https://zhuanlan.zhihu.com/p/400821482)
- [LibCity入门教程(4)—— 自动化调参工具](https://zhuanlan.zhihu.com/p/401190615)
- [北航BIGSCity课题组提出LibCity工具库:城市时空预测深度学习开源平台](https://zhuanlan.zhihu.com/p/436191860)

## Contribution

The LibCity is mainly developed and maintained by Beihang Interest Group on SmartCity ([BIGSCITY](https://www.bigcity.ai/)). The core developers of this library are [@aptx1231](https://github.com/aptx1231) and [@WenMellors](https://github.com/WenMellors).

Several co-developers have also participated in the reproduction of the model, the list of contributions of which is presented in the [reproduction contribution list](./contribution_list.md).

If you encounter a bug or have any suggestion, please contact us by [raising an issue](https://github.com/LibCity/Bigscity-LibCity/issues).
If you encounter a bug or have any suggestion, please contact us by [raising an issue](https://github.com/LibCity/Bigscity-LibCity/issues). You can also contact us by sending an email to [email protected].

## Cite

Expand Down
32 changes: 28 additions & 4 deletions readme_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,21 +10,22 @@ LibCity 是一个统一、全面、可扩展的代码库,为交通预测领域

LibCity 目前支持以下任务:

* 时间序列预测
* 交通状态预测
* 交通流量预测
* 交通速度预测
* 交通需求预测
* OD矩阵预测
* 起点-终点(OD)矩阵预测
* 交通事故预测
* 轨迹下一跳预测
* 到达时间预测
* 路网匹配
* 路网表征学习

## Features

* **统一性**:LibCity 构建了一个系统的流水线以在一个统一的平台上实现、使用和评估交通预测模型。 我们设计了统一的时空数据存储格式、统一的模型实例化接口和标准的模型评估程序。

* **全面性**:复现覆盖 8 个交通预测任务的 54 个模型,形成了全面的模型库。 同时,LibCity 收集了 32 个不同来源的常用数据集,并实现了一系列常用的性能评估指标和策略。
* **全面性**:复现覆盖 9 个交通预测任务的 60 个模型,形成了全面的模型库。 同时,LibCity 收集了 35 个不同来源的常用数据集,并实现了一系列常用的性能评估指标和策略。

* **可扩展性**:LibCity 实现了不同组件的模块化设计,允许用户灵活地加入自定义组件。 因此,新的研究人员可以在 LibCity 的支持下轻松开发新模型。

Expand Down Expand Up @@ -65,13 +66,36 @@ python run_model.py --task traffic_state_pred --model GRU --dataset METR_LA

更多细节请访问 [文档](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/get_started/quick_start.html)

## Reproduced Model List

LibCity 中所复现的全部模型列表见[文档](https://bigscity-libcity-docs.readthedocs.io/en/latest/user_guide/model.html),在这里你可以看到模型的简称和对应的论文及引用文献。

## Tutorial

为了方便用户使用 LibCity,我们为用户提供了一些入门教程:

- 我们在 ACM SIGSPATIAL 2021 Main Track 以及 Local Track 上都进行了演讲,相关的演讲视频和Slide见我们的[主页](https://libcity.ai/#/tutorial)(中英文)。
- 我们在文档中提供了入门级教程(中英文)。
- [Install and quick start](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/install_quick_start.html) & [安装和快速上手](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/install_quick_start.html)
- [Run an existing model in LibCity](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/run_model.html) & [运行LibCity中已复现的模型](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/run_model.html)
- [Add a new model to LibCity](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/add_model.html) & [在LibCity中添加新模型](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/add_model.html)
- [Tuning the model with automatic tool](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/hyper_tune.html) & [使用自动化工具调参](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/hyper_tune.html)
- [Visualize Atomic Files](https://bigscity-libcity-docs.readthedocs.io/en/latest/tutorial/data_visualization.html) & [原子文件可视化](https://bigscity-libcity-docs.readthedocs.io/zh_CN/latest/tutorial/data_visualization.html)
- 为了便于国内用户使用,我们在知乎上提供了入门教程(中文)。
- [LibCity:一个统一、全面、可扩展的交通预测算法库](https://zhuanlan.zhihu.com/p/401186930)
- [LibCity入门教程(1)——安装与快速上手](https://zhuanlan.zhihu.com/p/400814990)
- [LibCity入门教程(2)——运行LibCity中已复现的模型](https://zhuanlan.zhihu.com/p/400819354)
- [LibCity入门教程(3)——在LibCity中添加新模型](https://zhuanlan.zhihu.com/p/400821482)
- [LibCity入门教程(4)—— 自动化调参工具](https://zhuanlan.zhihu.com/p/401190615)
- [北航BIGSCity课题组提出LibCity工具库:城市时空预测深度学习开源平台](https://zhuanlan.zhihu.com/p/436191860)

## Contribution

LibCity 主要由北航智慧城市兴趣小组 ([BIGSCITY](https://www.bigcity.ai/)) 开发和维护。 该库的核心开发人员是 [@aptx1231](https://github.com/aptx1231)[@WenMellors](https://github.com/WenMellors)

若干共同开发者也参与了模型的复现,其贡献列表在 [贡献者列表](./contribution_list.md)

如果您遇到错误或有任何建议,请通过以下方式与我们联系: [提交issue](https://github.com/LibCity/Bigscity-LibCity/issues)
如果您遇到错误或有任何建议,请通过 [提交issue](https://github.com/LibCity/Bigscity-LibCity/issues) 的方式与我们联系。您也可以通过发送邮件的方式联系我们,邮箱为[email protected]

## Cite

Expand Down

0 comments on commit 2787949

Please sign in to comment.