Skip to content

Install & configure Tensorflow (1.15.0) on Nvidia Jetson Nano/Xavier NX board to be used in Node-RED.

License

Notifications You must be signed in to change notification settings

Lapland-UAS-Tequ/jetson-nodered-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 

Repository files navigation

This repository is developed in Fish-IoT project

https://www.tequ.fi/en/project-bank/fish-iot/


jetson-nodered-tensorflow

This guide is for using Tensorflow 1 (tfjs-node-gpu) in Node-RED using Jetson Nano or Xavier NX device and run object detection on images. Might work on Xavier AGX also, but I didnt have one to test. At the moment of writing this, tfjs-node(-gpu) directly depends on libtensorflow version 1.15.0, so downgrading CUDA on Jetson Xavier NX is necessary to make things work. If you are using Jetson Nano, you can install Jetpack 4.3 from official NVIDIA Jetpack 4.3 image and start from list item number 9.


UPDATE 31.8.2020

Newest tfjs-node-gpu versions (tested with 3.8.0 and 3.9.0) work with newer libtensorflow versions. Check this guide if you want to use Tensorflow 2.

https://github.com/Lapland-UAS-Tequ/tequ-jetson-nodered-tensorflow/


After running all commands you should have following versions of the components

Software Version
Jetpack 4.5.1 or 4.3
CUDA 10.0.326
cuDNN 7.6.3.28
libtensorflow 1.15.0
node-red 2.0.5
tfjs-node-gpu 1.4.0

Installation

1. Install Jetpack 4.5.1 for Jetson NX Xavier

https://developer.nvidia.com/embedded/learn/getting-started-jetson

2. Run update & upgrade

sudo apt update && sudo apt upgrade

3. Remove current CUDA installation

sudo apt purge cuda-tools-10-2 libcudnn8 cuda-documentation-10-2 cuda-samples-10-2 nvidia-l4t-graphics-demos ubuntu-wallpapers-bionic libreoffice* chromium-browser* thunderbird fonts-noto-cjk
sudo apt autoremove
sudo reboot

4. Create folder for files

cd /home/
cd /<your user name>/
mkdir cuda_files
cd /home/cuda_files

5. Download new CUDA & cuDNN files

wget https://jetson-nodered-files.s3.eu.cloud-object-storage.appdomain.cloud/cuda-repo-l4t-10-0-local-10.0.326_1.0-1_arm64.deb
wget https://jetson-nodered-files.s3.eu.cloud-object-storage.appdomain.cloud/libcudnn7_7.6.3.28-1+cuda10.0_arm64.deb

6. Install CUDA 10

sudo dpkg -i cuda-repo-l4t-8-0-local_8.0.34-1_arm64.deb
sudo apt update
sudo apt search cuda
sudo apt install cuda-toolkit-10.0
sudo apt install cuda-samples-10.0
export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

7. Install cuDNN

sudo apt install ./libcudnn7_7.6.3.28-1+cuda10.0_arm64.deb

8. Install jtop and check that everything is installed correctly

sudo apt-get install python3-pip
sudo -H pip3 install -U jetson-stats
jtop

alt text

9. Install node-red (start here if you have Jetson Nano with Jetpack 4.3)

bash <(curl -sL https://raw.githubusercontent.com/node-red/linux-installers/master/deb/update-nodejs-and-nodered)

10. Install tensorflow 1.15.0

https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html

sudo apt-get update
sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev liblapack-dev libblas-dev gfortran
sudo pip3 install -U pip testresources setuptools==49.6.0
sudo pip3 install -U numpy==1.19.4 future==0.18.2 mock==3.0.5 h5py==2.10.0 keras_preprocessing==1.1.1 keras_applications==1.0.8 gast==0.2.2 futures protobuf pybind11
wget https://jetson-nodered-files.s3.eu.cloud-object-storage.appdomain.cloud/tensorflow_gpu-1.15.0+nv20.1-cp36-cp36m-linux_aarch64.whl
sudo pip3 install tensorflow-gpu/tensorflow_gpu-1.15.0+nv20.1-cp36-cp36m-linux_aarch64.whl

11. Check that tensorflow is working in Python

python3
import tensorflow

12. Install [email protected] and @cloud-annotations/models-node-gpu

cd ~/.node-red
npm install @tensorflow/[email protected]
npm install @cloud-annotations/models-node-gpu

Installation will finish with errors. Ignore errors and continue.

13. Move to folder tfjs-node-gpu

cd ~/.node-red/node_modules/@tensorflow/tfjs-node-gpu/deps

14. Download libtensorflow 1.15.0

wget https://jetson-nodered-files.s3.eu.cloud-object-storage.appdomain.cloud/libtensorflow-gpu-linux-arm64-1.15.0.tar.gz

15. Extract libtensorflow package

tar xzvf libtensorflow-gpu-linux-arm64-1.15.0.tar.gz

16. Install libtensorflow package

sudo npm install --global node-pre-gyp
npm run build-addon-from-source

test

cd ~/.node-red
node
var tf = require('@tensorflow/tfjs-node-gpu')

17. Install canvas for annotating images

https://www.npmjs.com/package/canvas

Install dependencies first

sudo apt-get install build-essential libcairo2-dev libpango1.0-dev libjpeg-dev libgif-dev librsvg2-dev
npm install canvas

18. Use Tensorflow in Node-RED

Start Node-RED

node-red-start

19. Import example flow

Go to:

https://github.com/Lapland-UAS-Tequ/tequ-api-client/

Copy and import 'example-ai-detect-v2.json' to your Node-RED.

You should see something like this in Node-RED log after flow is deployed, if everything regarding to Tensorflow went well:

alt text

20. Use Tensorflow in Node-RED

Configure model folder

Inject image to flow and start detecting objects.

First inference is slow and it takes something like ~5-30 seconds. After that it should run smoothly.

alt text

21. Custom object detection model

If you need to build your own model, you can follow this guide:

https://github.com/Lapland-UAS-Tequ/tequ-tf1-ca-training-pipeline

22. Some inference benchmarking

GUI is disabled

sudo service gdm stop
sudo systemctl set-default multi-user.target

Inference speeds for MJPEG stream from Raspberry PI4 with HQ-camera

Streaming is started with command

raspivid -v -n -b 25000000 -qp 10 -md 2 -w 1920 -h 1080 -fps 25 -cd MJPEG -n -rot 180 -t 0 -o tcp://127.0.0.1:50001

*md (mode) and w and h parameters can vary.

Raspivid MJPEG stream is parsed in Node-RED at RPI4 and rerouted to Jetson via Websocket.

NVIDIA Jetson Xavier NX

Resolution FPS Frame size
320 x 240 15 ~35 kB
1280 x 720 10 ~115 kB
1920 x 1080 8 ~122 kB
4000 x 600 8 ~112 kB
2028 x 1520 5 ~121 kB
4056 x 1520 3 ~137 kB

NVIDIA Jetson Nano

Resolution FPS Frame size
320 x 240 8 ~35 kB
1280 x 720 6 ~115 kB
1920 x 1080 5 ~122 kB
4000 x 600 4 ~112 kB
2028 x 1520 3 ~121 kB
4056 x 1520 2 ~137 kB

About

Install & configure Tensorflow (1.15.0) on Nvidia Jetson Nano/Xavier NX board to be used in Node-RED.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published