Skip to content

LINs-lab/cluster_tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Welcome to the LINs & Auto Lab cluster

This is a manual for cluster users.

Quick Guide

Introduction

Currently, we are hosting these services in the campus network (available after configuring the hosts):

Our cluster is located in the core server room, E6-106.

We have been designated with an IP address range: 10.0.2.160-192/27.

System Topology:

┌───────────────────────────────────┐ ┌──────────────────────────────────┐
│             Login Node            │ │        NGINX Reverse Proxy       │
└─────────────┬─────────────────────┘ └────────┬────────┬────────────────┘
              │                                │        │
            Access      ┌────────Access────────┘      Access
              │         │                               │
┌─────────────▼─────────▼───────────┐ ┌─────────────────▼─────────────────┐
│     Determined AI GPU Cluster     │ │      Supplementary Services       │
├───────────────────────────────────┤ ├───────────────────────────────────┤
│                                   │ │                                   │
│ ┌──────┐ ┌────┐ ┌────┐ ┌────┐     │ │  ┌──────┐ ┌───────┐ ┌───────┐     │
│ │Master│ │GPU │ │GPU │ │GPU │     │ │  │      │ │       │ │       │     │
│ │      │ │    │ │    │ │    │ ... │ │  │Harbor│ │Grafana│ │ Other │ ... │
│ │ Node │ │Node│ │Node│ │Node│     │ │  │      │ │       │ │       │     │
│ └──────┘ └────┘ └────┘ └────┘     │ │  └──────┘ └───────┘ └───────┘     │
│                                   │ │                                   │
└───────────────────┬───────────────┘ └──────────┬────────────────────────┘
                    │                            │
                  Access                       Access
                    │                            │
┌───────────────────▼────────────────────────────▼────────────────────────┐
│                              TrueNAS - NFS                              │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                         │
│                              Storage Server                             │
│                                                                         │
└─────────────────────────────────────────────────────────────────────────┘

Useful Resources

Mirrors hosted at Westlake University

Pypi

pip config set global.index-url https://mirrors.westlake.edu.cn/pypi/simple/

Conda

Create a .condarc file in your home folder with:

channels:
  - defaults
show_channel_urls: true
default_channels:
  - http://mirrors.westlake.edu.cn/ANACONDA/pkgs/main
  - http://mirrors.westlake.edu.cn/ANACONDA/pkgs/r
  - http://mirrors.westlake.edu.cn/ANACONDA/pkgs/msys2
custom_channels:
  bioconda: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  caffee2: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  conda-forge: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  deepmodeling: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  intel: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  menpo: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  msys2: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  numba: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  nvidia: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  Paddle: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  pytorch: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  pytorch-lts: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  pytorch-test: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  pytorch3d: http://mirrors.westlake.edu.cn/ANACONDA/cloud
  qiime2: http://mirrors.westlake.edu.cn/ANACONDA/cloud

Hardware Specifications

Click to show photo drawing drawing

Hardware Details

LINs lab GPU Node 1, 2:

Name Spec
Model Powerleader PR4910W (Supermicro SYS-420GP-TNR)
CPU Intel Xeon Platinum 8352Y*2 (64C/128T, 2.2-3.4GHz)
RAM Samsung M393A4K40DB3-CWE DDR4 ECC REG 3200MHz 512G (32G * 16)
GPU MSI (0x1462) RTX 3090 Turbo * 8
SSD Samsung PM883 (MZ7LH960) 960GB 2.5" SATA drive * 2
NIC Intel I350-T2 1GbE Dual Port
NIC Intel X520-SR2 (82599ES) 10GbE Dual Port
NIC Mellanox ConnectX-6 VPI HDR100 QSFP56 MCX653105A-ECAT 100Gb ETH/IB Single Port
RAID LSI MegaRAID SAS 9361-8i

LINs lab GPU Node 3:

Name Spec
Model ASUS ESC8000A-E11
CPU AMD EPYC 7543 * 2 (64C/128T, 2.8-3.7GHz)
RAM Samsung M393A4K40EB3-CWE DDR4 512G (32G*16) 3200MT/s ECC REG
GPU MANLI (NVIDIA/0x10DE) RTX 4090 * 8
SSD Intel S4610 (SSDSC2KG96) 960G * 2 (RAID 1)
NIC Intel X540-AT2 10GbE Dual Port
NIC Intel X520-SR2 (82599ES) 10GbE Dual Port
RAID LSI SAS3008 PCI-Express Fusion-MPT SAS-3

LINs lab GPU Node 4:

Name Spec
Model Powerleader PR4908R (Supermicro 4124GS-TNR)
CPU AMD EPYC 7543 * 2 (64C/128T, 2.8-3.7GHz)
RAM Samsung M393A4K40DB3-CWE DDR4 512G (32G*16) 3200MT/s ECC REG
GPU Colorful (0x7377) RTX 4090 * 8
SSD Samsung PM883 (MZ7LH960HAJR-00005) 960GB 2.5" SATA drive * 2
NIC Intel X520-SR2 (82599ES) 10GbE Dual Port
NIC Intel i350-T2 1GbE Dual Port
RAID LSI MegaRAID SAS 9361-8i

LINs lab GPU Node 5:

Name Spec
Model AMAX ServMax G428-H3 (ASUS ESC8000A-E11)
CPU AMD EPYC 7543 * 2 (64C/128T, 2.8-3.7GHz)
RAM Samsung M393A4K40DB3-CWE DDR4 512G (32G*16) 3200MT/s ECC REG
GPU Colorful (0x7377) RTX 4090 * 8
SSD Intel D3-S4510 960GB 2.5" SATA drive * 2
NIC Intel X520-SR2 (82599ES) 10GbE Dual Port
NIC Intel i350-T2 1GbE Dual Port
RAID LSI MegaRAID SAS 9361-8i

LINs lab GPU Node 6, Auto lab GPU Node 1:

Name Spec
Model ASUS ESC8000A-E12
CPU AMD EPYC 9554 * 2 (128C/256T, 3.1-3.75GHz)
RAM Samsung M321R4GA3BB6-CQKDS DDR5 768G (32*24) 4800MT/s ECC REG
GPU Gigabyte (0x1458) RTX 4090 * 8
SSD Micron 5300 1.92TB 2.5" SATA drive * 2
NIC Intel X520-SR2 (82599ES) 10GbE Dual Port
NIC Intel I350-T2 1GbE Dual Port

Auto lab GPU Node 2:

Name Spec
Model Powerleader PR4908W
CPU Intel Xeon Gold 6330 * 2 (56C/112T, 2.0-3.1GHz)
RAM Samsung M393A8G40BB4-CWE DDR4 768G (64*12) 3200MT/s @ 2933MT/s ECC REG
GPU NVIDIA (0x10de) L40 48G * 8
SSD Samsung PM893 960G 2.5" SATA drive * 2 (RAID1)
NIC Intel X520-SR2 (82599ES) 10GbE Dual Port
NIC Intel I350-T2 1GbE Dual Port * 2
RAID Broadcom / LSI MegaRAID SAS-3 3108

Storage & Management Server:

Name Spec
Model Powerleader PR4036P3
CPU Intel Xeon Silver 4210R*2 (20C/40T, 2.4-3.2GHz)
RAM Samsung M393A8G40AB2-CWE DDR4 ECC REG 3200MHz 256G (64G * 4)
SSD Samsung PM883 (MZ7LH960) 960GB 2.5" SATA drive * 2
SSD Samsung PM983 (MZQLB7T6HMLA-00003) 7.68TB 2.5" NVMe U.2 drive
SSD Intel P5510 2.5" U.2 NVMe 7.68T *4
HDD Seagate Exos X18 (ST18000NM000J-2T) 18TB * 6
NIC Intel X520-SR2 (82599ES) 10GbE Dual Port
NIC Intel i350-AM2 1GbE Dual Port
RAID LSI MegaRAID SAS 9361-8i

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •