Skip to content
/ pysolardb Public

Python library to access LE2P solar database SolarDB

License

Notifications You must be signed in to change notification settings

LE2P/pysolardb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pysolardb

Python library to access LE2P solar database SolarDB

Source code accessible via the github repository: pySolarDB

REQUIREMENT: You will need to either use a python version superior or equal to python3.10 or install a .bz2 support package and the libffi package on your machine (libbz2-dev and libffi-dev for Ubuntu)

Installation

Using pip

pip install pysolardb

Suggestion: You will need a token to allow data access.

In the following, we will use an instance of the SolarDB class as an example.

from pysolardb.SolarDB import SolarDB

solar=SolarDB(token="YOUR_TOKEN")
# if the token is already saved in the environment
solar=SolarDB(logging_level=20)

Note: You will be notified if a newer version of the package exists on Pypi when the SolarDB object is created.

You can disable part of the messages by setting the logging_levelduring the instanciation or by using setLoggerLevel:

import logging

solar.setLoggerLevel(logging.WARNING)
# using and integer
solar.setLoggerLevel(30)

Keep in mind that the requests will sometimes result in empty answers. Setting the logger level to a lower level might help identifying such cases.

CLass Diagram

class_diagram

Utils methods: Register, Login, Status and Logout

Note: You can configure the '~/.bashrc' file in your home directory to allow the library to automatically recover and use your authentication token.

In the ~/.bashrc file:

export SolarDBToken=YOUR_AUTHENTICATION_TOKEN

Register

If you do not already possess a token, use the register method to receive a new one by email:

solar.register(email="YOUR_EMAIL_ADDRESS")

Login

Assuming you did not configure your '~/.bashrc' file, logged out or just received your token, you will need to use the login method before being able to access the solar data:

solar.login(token="YOUR_AUTHENTICATION_TOKEN")

Status

The status method verifies if the user is still logged in SolarDB.

solar.status()

Remark: This method becomes obsolete for logging levels higher than INFO.

Logout

The logout method disables the access to SolarDB data.

solar.logout()

Recovering the sites, types and sensors list

Sites recovery

The getAllSites method returns a list of strings containing all the alias sites present in SolarDB.

solar.getAllSites()

Types recovery

The getAllTypes method returns a list of strings containing all the data types present in SolarDB.

solar.getAllTypes()

Sensors recovery

The getSensors method returns a list of strings containing the sensor IDs extracted from SolarDB. To narrow down the sensors, use the following parameters:

  • sites : list[str] (optional)
  • sensor_types : list[str] (optional)
solar.getSensors()
# search the diffuse and global irradiance sensors at Le Port Mairie
solar.getSensors(sites=["leportmairie"], sensor_types=["DHI","GHI"])

Data collection

Note: The following data recovery methods will return empty dictionaries unless they recieve at least one site, type and/or sensor ID as parameters.

Raw data recovery

The getData method recovers all the data associated to a list of alias sites, types and/or sensor IDs. It takes at least one of the following parameters:

  • sites : list[string]
  • sensor_types : list[string]
  • sensors : list[string]
  • start : string (optional)
  • stop : string (optional)
  • aggrFn : string (optional)
  • aggrEvery : string (optional)
# get the global irradiance and air temperature values from Vacaos and Plaine Des Palmistes Parc National taking the average value for each week over the last 2 years
data = solar.getData(sites=["plaineparcnational","vacoas"], sensor_types=["GHI"], start="-2y", aggrFn="mean", aggrEvery="1w")

The data we just collected can then be used to plot the evolution of the global irradiance:

import matplotlib.pyplot as plt
from datetime import datetime as dt

alias = ["plaineparcnational","vacoas"]
dtype = ["GHI", "TA"]
data = solar.getData(sites=alias, sensor_types=dtype, start="-2y", aggrFn="mean", aggrEvery="1w")

# extract the global irradiance dates and values for Vacoas from the 'data' dictionary
sensors = solar.getSensors(sites=[alias[1]], sensor_types=["GHI"])

plt.figure()
for sensor in sensors:
    dates = data[alias[1]][sensor]["dates"]
    values = data[alias[1]][sensor]["values"]

    # change the dates to a datetime format
    dates = [dt.strptime(date, "%Y-%m-%dT%H:%M:%SZ") for date in dates]

    # plot the average global irradiance per week for the last 2 years

    plt.plot(dates, values)
plt.legend(labels=sensors)
plt.show()

Get the sensors' active period for specific sites

The getBounds method returns a dictionary containing the active time period per sensor per site. it takes at least one of the following the parameters:

  • sites : list[string] (optional)
  • sensor_types : list[string] (optional)
  • sensors : list[string] (optional)
# get the temporal bounds of each sensor at Saint Louis Lycée Jean Joly
alias= ['saintlouisjeanjoly']
dtype = ['GHI']
bounds = solar.getBounds(sensor_types=dtype, sites=alias)
prettyBounds = []
for site in bounds:
    for sensor in bounds[site]:
        prettyBounds.append(sensor + "= start: " + bounds[site][sensor]["start"] \
                             + " | stop: " + bounds[site][sensor]["stop"])
print("\n".join(prettyBounds))

Dataframe recovery

The getSiteDataframe method returns a pandas dataframe containing the data associated to a site for a requested time period using the following parameters:

  • site : string
  • sensor_types : list[string] (optional)
  • start : string (optional)
  • stop : string (optional)

This dataframe can then be converted to a CSV file using the pandas library:

# get the pandas dataframe of the data for Amitié over the last week
df = solar.getSiteDataframe(site="amitie", start="-1w")
# print the first rows of our dataframe
print(df.head())
# save the dataframe in a CSV file
try:
    df.to_csv("FILEPATH"+"FILENAME.csv")
except Exception as e:
    solar.logger.warning(e)

Metadata recovery

Recover the campaigns' metadata

The getCampaigns method is used to recover the metadata associated with the different campaigns of the IOS-Net project in a dictionary. You can use the following parameters:

  • id : string (optional)
  • name : string (optional)
  • territory : string (optional)
  • alias : string (optional)
solar.getCampaigns()
# get the campaigns' metadata for Mauritius
solar.getCampaigns(territory="Mauritius")

Extract the instruments' metadata

The getInstruments method recovers the metadata associated to the instruments used by the IOS-Net project. It takes the following parameters:

  • id : string (optional)
  • name : string (optional)
  • label : string (optional)
  • serial : string (optional)
solar.getInstruments()

Get the measures' metadata

The getMeasures method recovers the metadata that is associated with the different types of measures. You can use the parameters:

  • id : string (optional)
  • name : string (optional)
  • measure_type : string (optional)
  • nested : boolean (optional)
solar.getMeasures()
# get the metadata for UV measures
solar.getMeasures(measure_type="UVAB")

Recover the models' metadata

The getModels method recovers the metadata associated to the sensor types. You can use these parameters :

  • id : string (optional)
  • name : string (optional)
  • model_type : string (optional)
solar.getModels()

About

Python library to access LE2P solar database SolarDB

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages