Skip to content

Implementing thermal solver

Philipp Bucher edited this page Mar 24, 2019 · 16 revisions

The following tutorial will explain how to implement a Solver from scratch, in this case applied to the particular case of the thermal problem, following the lines of the already presented on the other tutorials. We will skip the most advanced points of the construction of the Solver and we will create a basic working solver for the sake of academic purposes, so the resulting file will not coincide with the real solver on the repository.

Imports

The solver as any element of Kratos requires to import the corresponding libraries and applications. Like out objective on mind is to create a thermal problem, we will import the base KratosMultiphysics library as well as the ConvectionDiffusionApplication. For importing files from the filesystem we will import os python library, which will be helpful.

from __future__ import print_function, absolute_import, division  # makes KratosMultiphysics backward compatible with python 2.6 and 2.7

# Importing the Kratos Library
import KratosMultiphysics

# Import applications
import KratosMultiphysics.ConvectionDiffusionApplication as ConvectionDiffusionApplication

# Other imports
import os

Constructing the solver

We will create a Solver, following was is done in other applications Solver, for the sake of consistency, so in first place we define the function CreateSolver, which is common among all the solvers and therefore it is necessary to be called that way. This function will use as input a Model and configuration Parameters:

def CreateSolver(model, custom_settings):
    return ConvectionDiffusionSolver(model, custom_settings)

As we see this function call a class called ConvectionDiffusionSolver, so we need to define our solver in first place, for that we define the constructor or __init__ function:

class ConvectionDiffusionSolver(object):
    """The base class for convection-diffusion solvers.
    This class provides functions for importing and exporting models,
    adding nodal variables and dofs and solving each solution step.
    """
    def __init__(self, model, custom_settings):
        default_settings = KratosMultiphysics.Parameters("""
        {
            "model_part_name" : "ThermalModelPart",
            "echo_level": 0,
            "buffer_size": 2,
            "model_import_settings": {
                "input_type": "mdpa",
                "input_filename": "unknown_name"
            },
            "computing_model_part_name" : "Thermal",
            "material_import_settings" :{
                "materials_filename": ""
            },
            "clear_storage": false,
            "residual_relative_tolerance": 1.0e-4,
            "residual_absolute_tolerance": 1.0e-9,
            "max_iteration": 10,
            "linear_solver_settings":{
                "solver_type": "BICGSTABSolver",
                "preconditioner_type": "DiagonalPreconditioner",
                "max_iteration": 5000,
                "tolerance": 1e-9,
                "scaling": false
            },
            "element_replace_settings" : {
                "element_name" : "EulerianConvDiff",
                "condition_name" : "Condition"
            },
            "problem_domain_sub_model_part_list": ["conv_diff_body"],
            "processes_sub_model_part_list": [""]
        }
        """)
    
        # Overwrite the default settings with user-provided parameters.
        self.settings = custom_settings
        self.settings.ValidateAndAssignDefaults(default_settings)

        self.model = model
        model_part_name = self.settings["model_part_name"].GetString()
        self.main_model_part = self.model[model_part_name]
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionSolver]:: ", "Construction finished")

First we define the default Parameters, which will overwrite the not define configurations of our custom_settings, this is done with the ValidateAndAssignDefaults method. We define the main_model_part as a part of the solver, using the self to define it as an instance attribute.

Common methods for the solver

The following are common methods defined in all solvers in order to have an interoperability between them to couple different physical problems.

Add variables

The AddVariables is the liable on adding the nodal historical variables to the model part. We will need to define a buffer in order to be able to access this historical variables. We will see how in following sections.

We add the variables corresponding to the standard thermal convection-diffusion problem. We will need to add this variables to the CONVECTION_DIFFUSION_SETTINGS (this is something specific of the ConvectionDiffusionAplication, and is done in order to solve different types convection diffusion problems).

def AddVariables(self):
    ''' Add nodal solution step variables ( later add to CONVECTION_DIFFUSION_SETTINGS)
    '''
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.DENSITY)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.CONDUCTIVITY)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.TEMPERATURE)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.HEAT_FLUX)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.FACE_HEAT_FLUX)
    self.main_model_part.AddNodalSolutionStepVariable(ConvectionDiffusionApplication.PROJECTED_SCALAR1)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.CONVECTION_VELOCITY)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.MESH_VELOCITY)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.VELOCITY)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.SPECIFIC_HEAT)
    self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.REACTION_FLUX)

    KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Variables ADDED")

Add DoFs

In this case we add to the nodes the degrees of freedom corresponding to the problems we want to solve, in our case only the TEMPERATURE.

def AddDofs(self):
    KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.TEMPERATURE, KratosMultiphysics.REACTION_FLUX, self.main_model_part)
    KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "DOF's ADDED")

We the VariableUtils class, which allows us to do this operation in parallel, in case we want to use the methods available directly on the Node class we can do:

def AddDofs(self):
    for node in self.main_model_part.Nodes:
        node.AddDof(KratosMultiphysics.TEMPERATURE, KratosMultiphysics.REACTION_FLUX)          
    KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "DOF's ADDED")  

Read external file (*.mdpa file)

We read the *.mdpa file for that we use the class ModelPartIO, which is the class in charge of managing the write/read procedures.

def ReadModelPart(self):
    KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]::", "Reading model part.")
    problem_path = os.getcwd()
    input_filename = self.settings["model_import_settings"]["input_filename"].GetString()
    # Import model part from mdpa file.
    KratosMultiphysics.ModelPartIO(input_filename).ReadModelPart(self.main_model_part)
    KratosMultiphysics.Logger.PrintInfo("ModelPart", self.main_model_part)
    KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Finished reading model part.")

Prepare model part

After reading the model part we need to do some operations, as checking the mesh orientation, assigning the physical elements and conditions to the dummy Element/Condition and filling the buffer.

We mean for dummy Condition and Element that only contain a geometry and don't solve any physical problem, this is done for the sake of interoperability, which allows us to use the same mesh for the fluid and thermal problem.

First we define the reading of the properties of the problem. We use the read_materials_process defined on the core of Kratos.

def _execute_after_reading(self):
    """Import materials. """
    materials_filename = self.settings["material_import_settings"]["materials_filename"].GetString()
    if (materials_filename != ""):
        import read_materials_process
        # Create a dictionary of model parts.
        # Add constitutive laws and material properties from json file to model parts.
        read_materials_process.ReadMaterialsProcess(self.model, self.settings["material_import_settings"])
        
        # We set the properties that are nodal
        self._assign_nodally_properties()
        
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Materials were successfully imported.")
    else:
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Materials were not imported.")

In the case of the convection diffusion problems, the properties are not read from the Property but directly from the nodal values, so we create a method in order to copy this properties into the nodes of the mesh:

def _assign_nodally_properties(self):
    # We transfer the values of the con.diff variables to the nodes
    with open(self.settings["material_import_settings"]["materials_filename"].GetString(), 'r') as parameter_file:
        materials = KratosMultiphysics.Parameters(parameter_file.read())
        
    for i in range(materials["properties"].size()):
        model_part = self.main_model_part.GetSubModelPart(materials["properties"][i]["model_part_name"].GetString())
        mat = materials["properties"][i]["Material"]
        
        for key, value in mat["Variables"].items():
            var = KratosMultiphysics.KratosGlobals.GetVariable(key)
            if (self._check_variable_to_set(var)):
                if value.IsDouble():
                    KratosMultiphysics.VariableUtils().SetScalarVar(var, value.GetDouble(), model_part.Nodes)
                elif value.IsVector():
                    KratosMultiphysics.VariableUtils().SetVectorVar(var, value.GetVector(), model_part.Nodes)
                else:
                    raise ValueError("Type of value is not available")

We define the Parameters necessaries for the replace the Element/Condition, which depend on the configuration parameters, and the geometry of the problem (2D/3D, triangle, quadrilaterals, etc...). We will use the class ReplaceElementsAndConditionsProcess to replace these elements and conditions.

def _get_element_condition_replace_settings(self):
    num_nodes_elements = 0
    if (len(self.main_model_part.Elements) > 0):
        num_nodes_elements = len(self.main_model_part.Elements[1].GetNodes())

    ## Elements
    if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
        if (num_nodes_elements == 3):
            self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff2D")
        else:
            self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff2D4N")
    elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
        if (self.settings["element_replace_settings"]["element_name"].GetString() == "EulerianConvDiff"):
            self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff3D")
    else:
        raise Exception("DOMAIN_SIZE not set")
    
    ## Conditions
    num_nodes_conditions = 0
    if (len(self.main_model_part.Conditions) > 0):
        num_nodes_conditions = len(self.main_model_part.Conditions[1].GetNodes())
    if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
        self.settings["element_replace_settings"]["condition_name"].SetString("LineCondition2D2N")
    elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
        self.settings["element_replace_settings"]["condition_name"].SetString("SurfaceCondition3D3N")
    else:
        raise Exception("DOMAIN_SIZE not set")

    return self.settings["element_replace_settings"]

Fill the buffer is as easy as:

def _set_and_fill_buffer(self):
    """Prepare nodal solution step data containers and time step information. """
    # Set the buffer size for the nodal solution steps data. Existing nodal
    # solution step data may be lost.
    required_buffer_size = self.settings["buffer_size"].GetInt()
    current_buffer_size = self.main_model_part.GetBufferSize()
    buffer_size = max(current_buffer_size, required_buffer_size)
    self.main_model_part.SetBufferSize(buffer_size)
    # Cycle the buffer. This sets all historical nodal solution step data to
    # the current value and initializes the time stepping in the process info.
    delta_time = self.main_model_part.ProcessInfo[KratosMultiphysics.DELTA_TIME]
    time = self.main_model_part.ProcessInfo[KratosMultiphysics.TIME]
    step =-buffer_size
    time = time - delta_time * buffer_size
    self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.TIME, time)
    for i in range(0, buffer_size):
        step = step + 1
        time = time + delta_time
        self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.STEP, step)
        self.main_model_part.CloneTimeStep(time)

Finally, now that we have all the tools to prepare the model part we can define the method:

def PrepareModelPartForSolver(self):
        
    # Check and prepare computing model part and import constitutive laws.
    self._execute_after_reading()

    throw_errors = False
    KratosMultiphysics.TetrahedralMeshOrientationCheck(self.main_model_part, throw_errors).Execute()
    KratosMultiphysics.ReplaceElementsAndConditionsProcess(self.main_model_part,self._get_element_condition_replace_settings()).Execute()

    self._set_and_fill_buffer()
    
    KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]::", "ModelPart prepared for Solver.")

Initialize method

In order to initialize the solver we need to create the strategy, which will be Newton-Raphson in our case . Additionally we will define the CONVECTION_DIFFUSION_SETTINGS which can be used by the elements and conditions from the application.

def Initialize(self):
    """Perform initialization after adding nodal variables and dofs to the main model part. """
    KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Initializing ...")

    # We define the convection diffusion settings
    convention_diffusion_settings = KratosMultiphysics.ConvectionDiffusionSettings()
    convention_diffusion_settings.SetDensityVariable(KratosMultiphysics.DENSITY)
    convention_diffusion_settings.SetDiffusionVariable(KratosMultiphysics.CONDUCTIVITY)
    convention_diffusion_settings.SetUnknownVariable(KratosMultiphysics.TEMPERATURE)
    convention_diffusion_settings.SetVolumeSourceVariable(KratosMultiphysics.HEAT_FLUX)
    convention_diffusion_settings.SetSurfaceSourceVariable(KratosMultiphysics.FACE_HEAT_FLUX)
    convention_diffusion_settings.SetProjectionVariable(ConvectionDiffusionApplication.PROJECTED_SCALAR1)
    convention_diffusion_settings.SetConvectionVariable(KratosMultiphysics.CONVECTION_VELOCITY)
    convention_diffusion_settings.SetMeshVelocityVariable(KratosMultiphysics.MESH_VELOCITY)
    convention_diffusion_settings.SetVelocityVariable(KratosMultiphysics.VELOCITY)
    convention_diffusion_settings.SetSpecificHeatVariable(KratosMultiphysics.SPECIFIC_HEAT)
    convention_diffusion_settings.SetReactionVariable(KratosMultiphysics.REACTION_FLUX)
        
    self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.CONVECTION_DIFFUSION_SETTINGS, convention_diffusion_settings)
        
    # The mechanical solution strategy is created here if it does not already exist.
    computing_model_part = self.main_model_part # We will use the main model part
    #Variable defining the temporal scheme (0: Forward Euler, 1: Backward Euler, 0.5: Crank-Nicolson)
    computing_model_part.ProcessInfo[ConvectionDiffusionApplication.THETA] = 0.5
    computing_model_part.ProcessInfo[KratosMultiphysics.DYNAMIC_TAU] = 1.0
    conv_diff_scheme = KratosMultiphysics.ResidualBasedIncrementalUpdateStaticScheme()
    import linear_solver_factory
    linear_solver = linear_solver_factory.ConstructSolver(self.settings["linear_solver_settings"])
    conv_diff_convergence_criterion = KratosMultiphysics.ResidualCriteria(self.settings["residual_relative_tolerance"].GetDouble(), self.settings["residual_absolute_tolerance"].GetDouble())
    builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(linear_solver)
    self.conv_diff_strategy = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(computing_model_part,  conv_diff_scheme, linear_solver, conv_diff_convergence_criterion, builder_and_solver, self.settings["max_iteration"].GetInt(), True, False, False)
    self.conv_diff_strategy.SetEchoLevel(self.settings["echo_level"].GetInt())
    self.conv_diff_strategy.Initialize()
    self.conv_diff_strategy.Check()
    if self.settings["clear_storage"].GetBool():
        self.conv_diff_strategy.Clear()
    KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Finished initialization.")

Solving methods

The Solver as well as the strategy, has the same solving steps as the strategies (Newton-Rapshon and so on), this methods are InitializeSolutionStep, Predict, SolveSolutionStep and FinalizeSolutionStep, which can be call all together in only one method Solve.

def Solve(self):
    if self.settings["clear_storage"].GetBool():
        self.conv_diff_strategy.Clear()
    self.conv_diff_strategy.Solve()

def InitializeSolutionStep(self):
    self.conv_diff_strategy.InitializeSolutionStep()

def Predict(self):
    self.conv_diff_strategy.Predict()

def SolveSolutionStep(self):
    is_converged = self.conv_diff_strategy.SolveSolutionStep()
    return is_converged

def FinalizeSolutionStep(self):
    self.conv_diff_strategy.FinalizeSolutionStep()

Final script

Our thermal solver will be like the following:

from __future__ import print_function, absolute_import, division  # makes KratosMultiphysics backward compatible with python 2.6 and 2.7

# Importing the Kratos Library
import KratosMultiphysics

# Import applications
import KratosMultiphysics.ConvectionDiffusionApplication as ConvectionDiffusionApplication

# Other imports
import os

def CreateSolver(main_model_part, custom_settings):
    return ConvectionDiffusionSolver(main_model_part, custom_settings)

class ConvectionDiffusionSolver(object):
    """The base class for convection-diffusion solvers.
    This class provides functions for importing and exporting models,
    adding nodal variables and dofs and solving each solution step.
    """
    def __init__(self, model, custom_settings):
        default_settings = KratosMultiphysics.Parameters("""
        {
            "model_part_name" : "ThermalModelPart",
            "echo_level": 0,
            "buffer_size": 2,
            "model_import_settings": {
                "input_type": "mdpa",
                "input_filename": "unknown_name"
            },
            "computing_model_part_name" : "Thermal",
            "material_import_settings" :{
                "materials_filename": ""
            },
            "clear_storage": false,
            "residual_relative_tolerance": 1.0e-4,
            "residual_absolute_tolerance": 1.0e-9,
            "max_iteration": 10,
            "linear_solver_settings":{
                "solver_type": "BICGSTABSolver",
                "preconditioner_type": "DiagonalPreconditioner",
                "max_iteration": 5000,
                "tolerance": 1e-9,
                "scaling": false
            },
            "element_replace_settings" : {
                "element_name" : "EulerianConvDiff",
                "condition_name" : "Condition"
            },
            "problem_domain_sub_model_part_list": ["conv_diff_body"],
            "processes_sub_model_part_list": [""]
        }
        """)
    
        # Overwrite the default settings with user-provided parameters.
        self.settings = custom_settings
        self.settings.ValidateAndAssignDefaults(default_settings)

        self.model = model
        model_part_name = self.settings["model_part_name"].GetString()
        self.main_model_part = self.model[model_part_name]
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionSolver]:: ", "Construction finished")

    def AddVariables(self):
        ''' Add nodal solution step variables ( later add to CONVECTION_DIFFUSION_SETTINGS)
        '''
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.DENSITY)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.CONDUCTIVITY)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.TEMPERATURE)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.HEAT_FLUX)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.FACE_HEAT_FLUX)
        self.main_model_part.AddNodalSolutionStepVariable(ConvectionDiffusionApplication.PROJECTED_SCALAR1)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.CONVECTION_VELOCITY)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.MESH_VELOCITY)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.VELOCITY)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.SPECIFIC_HEAT)
        self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.REACTION_FLUX)

        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Variables ADDED")

    def AddDofs(self):
        for node in self.main_model_part.Nodes:
            node.AddDof(KratosMultiphysics.TEMPERATURE, KratosMultiphysics.REACTION_FLUX)          
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "DOF's ADDED")  

    def ReadModelPart(self):
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]::", "Reading model part.")
        problem_path = os.getcwd()
        input_filename = self.settings["model_import_settings"]["input_filename"].GetString()
        # Import model part from mdpa file.
        KratosMultiphysics.ModelPartIO(input_filename).ReadModelPart(self.main_model_part)
        KratosMultiphysics.Logger.PrintInfo("ModelPart", self.main_model_part)
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Finished reading model part.")

    def _execute_after_reading(self):
        """Import materials. """
        materials_filename = self.settings["material_import_settings"]["materials_filename"].GetString()
        if (materials_filename != ""):
            import read_materials_process
            # Add constitutive laws and material properties from json file to model parts.
            read_materials_process.ReadMaterialsProcess(self.model, self.settings["material_import_settings"])
            
            # We set the properties that are nodal
            self._assign_nodally_properties()
            
            KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Materials were successfully imported.")
        else:
            KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Materials were not imported.")

    def _assign_nodally_properties(self):
        # We transfer the values of the con.diff variables to the nodes
        with open(self.settings["material_import_settings"]["materials_filename"].GetString(), 'r') as parameter_file:
            materials = KratosMultiphysics.Parameters(parameter_file.read())
            
        for i in range(materials["properties"].size()):
            model_part = self.main_model_part.GetSubModelPart(materials["properties"][i]["model_part_name"].GetString())
            mat = materials["properties"][i]["Material"]
            
            for key, value in mat["Variables"].items():
                var = KratosMultiphysics.KratosGlobals.GetVariable(key)
                if (self._check_variable_to_set(var)):
                    if value.IsDouble():
                        KratosMultiphysics.VariableUtils().SetScalarVar(var, value.GetDouble(), model_part.Nodes)
                    elif value.IsVector():
                        KratosMultiphysics.VariableUtils().SetVectorVar(var, value.GetVector(), model_part.Nodes)
                    else:
                        raise ValueError("Type of value is not available")

    def _get_element_condition_replace_settings(self):
        num_nodes_elements = 0
        if (len(self.main_model_part.Elements) > 0):
            num_nodes_elements = len(self.main_model_part.Elements[1].GetNodes())

        ## Elements
        if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
            if (num_nodes_elements == 3):
                self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff2D")
            else:
                self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff2D4N")
        elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
            if (self.settings["element_replace_settings"]["element_name"].GetString() == "EulerianConvDiff"):
                self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff3D")
        else:
            raise Exception("DOMAIN_SIZE not set")
        
        ## Conditions
        num_nodes_conditions = 0
        if (len(self.main_model_part.Conditions) > 0):
            num_nodes_conditions = len(self.main_model_part.Conditions[1].GetNodes())
        if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
            self.settings["element_replace_settings"]["condition_name"].SetString("LineCondition2D2N")
        elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
            self.settings["element_replace_settings"]["condition_name"].SetString("SurfaceCondition3D3N")
        else:
            raise Exception("DOMAIN_SIZE not set")

        return self.settings["element_replace_settings"]

    def _set_and_fill_buffer(self):
        """Prepare nodal solution step data containers and time step information. """
        # Set the buffer size for the nodal solution steps data. Existing nodal
        # solution step data may be lost.
        required_buffer_size = self.settings["buffer_size"].GetInt()
        current_buffer_size = self.main_model_part.GetBufferSize()
        buffer_size = max(current_buffer_size, required_buffer_size)
        self.main_model_part.SetBufferSize(buffer_size)
        # Cycle the buffer. This sets all historical nodal solution step data to
        # the current value and initializes the time stepping in the process info.
        delta_time = self.main_model_part.ProcessInfo[KratosMultiphysics.DELTA_TIME]
        time = self.main_model_part.ProcessInfo[KratosMultiphysics.TIME]
        step =-buffer_size
        time = time - delta_time * buffer_size
        self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.TIME, time)
        for i in range(0, buffer_size):
            step = step + 1
            time = time + delta_time
            self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.STEP, step)
            self.main_model_part.CloneTimeStep(time)

    def PrepareModelPartForSolver(self):
            
        # Check and prepare computing model part and import constitutive laws.
        self._execute_after_reading()

        throw_errors = False
        KratosMultiphysics.TetrahedralMeshOrientationCheck(self.main_model_part, throw_errors).Execute()
        KratosMultiphysics.ReplaceElementsAndConditionsProcess(self.main_model_part,self._get_element_condition_replace_settings()).Execute()

        self._set_and_fill_buffer()
        
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]::", "ModelPart prepared for Solver.")

    def Initialize(self):
        """Perform initialization after adding nodal variables and dofs to the main model part. """
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Initializing ...")

        # We define the convection diffusion settings
        convention_diffusion_settings = KratosMultiphysics.ConvectionDiffusionSettings()
        convention_diffusion_settings.SetDensityVariable(KratosMultiphysics.DENSITY)
        convention_diffusion_settings.SetDiffusionVariable(KratosMultiphysics.CONDUCTIVITY)
        convention_diffusion_settings.SetUnknownVariable(KratosMultiphysics.TEMPERATURE)
        convention_diffusion_settings.SetVolumeSourceVariable(KratosMultiphysics.HEAT_FLUX)
        convention_diffusion_settings.SetSurfaceSourceVariable(KratosMultiphysics.FACE_HEAT_FLUX)
        convention_diffusion_settings.SetProjectionVariable(ConvectionDiffusionApplication.PROJECTED_SCALAR1)
        convention_diffusion_settings.SetConvectionVariable(KratosMultiphysics.CONVECTION_VELOCITY)
        convention_diffusion_settings.SetMeshVelocityVariable(KratosMultiphysics.MESH_VELOCITY)
        convention_diffusion_settings.SetVelocityVariable(KratosMultiphysics.VELOCITY)
        convention_diffusion_settings.SetSpecificHeatVariable(KratosMultiphysics.SPECIFIC_HEAT)
        convention_diffusion_settings.SetReactionVariable(KratosMultiphysics.REACTION_FLUX)
            
        self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.CONVECTION_DIFFUSION_SETTINGS, convention_diffusion_settings)
            
        # The mechanical solution strategy is created here if it does not already exist.
        computing_model_part = self.main_model_part # We will use the main model part
        #Variable defining the temporal scheme (0: Forward Euler, 1: Backward Euler, 0.5: Crank-Nicolson)
        computing_model_part.ProcessInfo[ConvectionDiffusionApplication.THETA] = 0.5
        computing_model_part.ProcessInfo[KratosMultiphysics.DYNAMIC_TAU] = 1.0
        conv_diff_scheme = KratosMultiphysics.ResidualBasedIncrementalUpdateStaticScheme()
        import linear_solver_factory
        linear_solver = linear_solver_factory.ConstructSolver(self.settings["linear_solver_settings"])
        conv_diff_convergence_criterion = KratosMultiphysics.ResidualCriteria(self.settings["residual_relative_tolerance"].GetDouble(), self.settings["residual_absolute_tolerance"].GetDouble())
        builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(linear_solver)
        self.conv_diff_strategy = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(computing_model_part,  conv_diff_scheme, linear_solver, conv_diff_convergence_criterion, builder_and_solver, self.settings["max_iteration"].GetInt(), True, False, False)
        self.conv_diff_strategy.SetEchoLevel(self.settings["echo_level"].GetInt())
        self.conv_diff_strategy.Initialize()
        self.conv_diff_strategy.Check()
        if self.settings["clear_storage"].GetBool():
            self.conv_diff_strategy.Clear()
        KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Finished initialization.")

    def Solve(self):
        if self.settings["clear_storage"].GetBool():
            self.conv_diff_strategy.Clear()
        self.conv_diff_strategy.Solve()

    def InitializeSolutionStep(self):
        self.conv_diff_strategy.InitializeSolutionStep()

    def Predict(self):
        self.conv_diff_strategy.Predict()

    def SolveSolutionStep(self):
        is_converged = self.conv_diff_strategy.SolveSolutionStep()
        return is_converged

    def FinalizeSolutionStep(self):
        self.conv_diff_strategy.FinalizeSolutionStep()

Project information

Getting Started

Tutorials

Developers

Kratos structure

Conventions

Solvers

Debugging, profiling and testing

HOW TOs

Utilities

Kratos API

Kratos Structural Mechanics API

Clone this wiki locally