PyTorch implementation of DeepMind's paper Overcoming Catastrophic Forgetting, PNAS 2017.
Continual Learning without EWC (left) and with EWC (right).
$ git clone https://github.com/kuc2477/pytorch-ewc && cd pytorch-ewc
$ pip install -r requirements.txt
Implementation CLI is provided by main.py
$ ./main.py --help
$ usage: EWC PyTorch Implementation [-h] [--hidden-size HIDDEN_SIZE]
[--hidden-layer-num HIDDEN_LAYER_NUM]
[--hidden-dropout-prob HIDDEN_DROPOUT_PROB]
[--input-dropout-prob INPUT_DROPOUT_PROB]
[--task-number TASK_NUMBER]
[--epochs-per-task EPOCHS_PER_TASK]
[--lamda LAMDA] [--lr LR]
[--weight-decay WEIGHT_DECAY]
[--batch-size BATCH_SIZE]
[--test-size TEST_SIZE]
[--fisher-estimation-sample-size FISHER_ESTIMATION_SAMPLE_SIZE]
[--random-seed RANDOM_SEED] [--no-gpus]
[--eval-log-interval EVAL_LOG_INTERVAL]
[--loss-log-interval LOSS_LOG_INTERVAL]
[--consolidate]
optional arguments:
-h, --help show this help message and exit
--hidden-size HIDDEN_SIZE
--hidden-layer-num HIDDEN_LAYER_NUM
--hidden-dropout-prob HIDDEN_DROPOUT_PROB
--input-dropout-prob INPUT_DROPOUT_PROB
--task-number TASK_NUMBER
--epochs-per-task EPOCHS_PER_TASK
--lamda LAMDA
--lr LR
--weight-decay WEIGHT_DECAY
--batch-size BATCH_SIZE
--test-size TEST_SIZE
--fisher-estimation-sample-size FISHER_ESTIMATION_SAMPLE_SIZE
--random-seed RANDOM_SEED
--no-gpus
--eval-log-interval EVAL_LOG_INTERVAL
--loss-log-interval LOSS_LOG_INTERVAL
--consolidate
$ python -m visdom.server &
$ ./main.py # Train the network without consolidation.
$ ./main.py --consolidate # Train the network with consolidation.
Ha Junsoo / @kuc2477 / MIT License