Skip to content

KevinKecc/MAL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MAL

MAL code for the paper Multiple Anchor Learning for Visual Object Detection pdf.

install

Get into MAL root folder.

  1. Create conda env by conda env create -n MAL and activate it by 'conda activate MAL'.
  2. Install python libraries. conda install ipython ninja yacs cython matplotlib tqdm
  3. Install pytorch 1.1 + torchvision 0.2.1 by pip. download whl file at https://download.pytorch.org/whl/cu90/torch_stable.html pip install [downloaded file]
  4. Install pycocotools pip install pycocotools
  5. Copy https://github.com/facebookresearch/maskrcnn-benchmark/tree/master/maskrcnn_benchmark to this repository.
  6. Build maskrcnn_benchmark by run python setup.py build develop
  7. Install OpenCV3.

inference for an image

  1. Go to ./demo
  2. Run python image_demo.py. You can use your own image and change the image path in image_demo.py

test on COCO dataset

Get into MAL root folder. For test-dev set, run python python -m torch.distributed.launch --nproc_per_node=8 tools/test_net.py --config-file ./config/MAL_X-101-FPN_e2e.yaml MODEL.WEIGHT ./output/models/model_0180000.pth DATASETS.TEST "('coco_test-dev',)"

For val set, run python python -m torch.distributed.launch --nproc_per_node=8 tools/test_net.py --config-file ./config/MAL_X-101-FPN_e2e.yaml MODEL.WEIGHT ./output/models/model_0180000.pth

experimental result

mAP = 47.0 on test-dev

pre-trained model

ResNet50: https://share.weiyun.com/5kcZju5 ResNet101: https://share.weiyun.com/5gtr6Ho ResNext101: https://share.weiyun.com/oUZUWfSx

About

MAL for cvpr765

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%