python homework about captcha recognize
CAPTCHA注册码识别实践
本实验中实现了基于TensorFlow的注册码识别任务。 如后所附代码,本实验中有captcha_gen.py用于生成captcha图片并返回图片中的真实验证码信息,cnn_train.py用于训练参数,captcha_cnn.py用于测试训练的模型,util.py包含了一些所需要的函数。
一、重点说明一下cnn_train.py内容: 这里进行了三层卷积神经网络计算,分别是卷积层、池化层、全链接层。 另外还有优化函数和准确度计算函数。 def weight_variable(shape, w_alpha=0.01): """ 增加噪音,随机生成权重 :param shape: :param w_alpha: :return: """ initial = w_alpha * tf.random_normal(shape) return tf.Variable(initial)
def bias_variable(shape, b_alpha=0.1): """ 增加噪音,随机生成偏置项 :param shape: :param b_alpha: :return: """ initial = b_alpha * tf.random_normal(shape) return tf.Variable(initial)
def conv2d(x, w): """ 局部变量线性组合,步长为1,模式‘SAME’代表卷积后图片尺寸不变,即零边距 :param x: :param w: :return: """ return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x): """ max pooling,取出区域内最大值为代表特征, 2x2pool,图片尺寸变为1/2 :param x: :return: """ return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
训练函数: def cnn_graph(x, keep_prob, size, captcha_list=CAPTCHA_LIST, captcha_len=CAPTCHA_LEN): """ 三层卷积神经网络计算图 :param x: :param keep_prob: :param size: :param captcha_list: :param captcha_len: :return: """ # 图片reshape为4维向量 image_height, image_width = size # 使用-1进行调整 x_image = tf.reshape(x, shape=[-1, image_height, image_width, 1])
# layer 1
# filter定义为3x3x1, 输出32个特征, 即32个filter
w_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])
# rulu激活函数
h_conv1 = tf.nn.relu(tf.nn.bias_add(conv2d(x_image, w_conv1), b_conv1))
# 池化
h_pool1 = max_pool_2x2(h_conv1)
# dropout防止过拟合
h_drop1 = tf.nn.dropout(h_pool1, keep_prob)
# layer 2
w_conv2 = weight_variable([3, 3, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(tf.nn.bias_add(conv2d(h_drop1, w_conv2), b_conv2))
h_pool2 = max_pool_2x2(h_conv2)
h_drop2 = tf.nn.dropout(h_pool2, keep_prob)
# layer 3
w_conv3 = weight_variable([3, 3, 64, 64])
b_conv3 = bias_variable([64])
h_conv3 = tf.nn.relu(tf.nn.bias_add(conv2d(h_drop2, w_conv3), b_conv3))
h_pool3 = max_pool_2x2(h_conv3)
h_drop3 = tf.nn.dropout(h_pool3, keep_prob)
# full connect layer
image_height = int(h_drop3.shape[1])
image_width = int(h_drop3.shape[2])
w_fc = weight_variable([image_height*image_width*64, 1024])
b_fc = bias_variable([1024])
h_drop3_re = tf.reshape(h_drop3, [-1, image_height*image_width*64])
h_fc = tf.nn.relu(tf.add(tf.matmul(h_drop3_re, w_fc), b_fc))
h_drop_fc = tf.nn.dropout(h_fc, keep_prob)
# out layer
w_out = weight_variable([1024, len(captcha_list)*captcha_len])
b_out = bias_variable([len(captcha_list)*captcha_len])
y_conv = tf.add(tf.matmul(h_drop_fc, w_out), b_out)
return y_conv
正式训练中,将每次训练时准确度超过acc_rate(初始时0.9)的记录下来,没记录一次acc_rate自增0.01,当达到0.95时退出训练,即总共有非连续的5次测试正确率超过了acc_rate时退出并保存最好的模型。
def train(height=CAPTCHA_HEIGHT, width=CAPTCHA_WIDTH, y_size=len(CAPTCHA_LIST)*CAPTCHA_LEN): ''' cnn训练 :param height: :param width: :param y_size: :return: ''' # cnn在图像大小是2的倍数时性能最高, 如果图像大小不是2的倍数,可以在图像边缘补无用像素 # 在图像上补2行,下补3行,左补2行,右补2行 # np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,))
acc_rate = 0.9
# 按照图片大小申请占位符
x = tf.placeholder(tf.float32, [None, height * width])
y = tf.placeholder(tf.float32, [None, y_size])
# 防止过拟合 训练时启用 测试时不启用
keep_prob = tf.placeholder(tf.float32)
# cnn模型
y_conv = cnn_graph(x, keep_prob, (height, width))
# 最优化
optimizer = optimize_graph(y, y_conv)
# 偏差
accuracy = accuracy_graph(y, y_conv)
# 启动会话.开始训练
saver = tf.train.Saver()
sess = tf.Session()
#初始化
sess.run(tf.global_variables_initializer())
step = 0
while 1:
batch_x, batch_y = next_batch(64)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.75})
# 每训练一百次测试一次
if step % 100 == 0:
batch_x_test, batch_y_test = next_batch(100)
acc = sess.run(accuracy, feed_dict={x: batch_x_test, y: batch_y_test, keep_prob: 1.0})
print(datetime.now().strftime('%c'), ' step:', step, ' accuracy:', acc)
# 偏差满足要求,保存模型
if acc > acc_rate:
model_path = os.getcwd() + os.sep + str(acc_rate) + "captcha.model"
saver.save(sess, model_path, global_step=step)
acc_rate += 0.01
#模型要求设置为0.85节省时间,应设为0.99
if acc_rate > 0.95:
break
step += 1
sess.close()
二、开始预测函数captcha_cnn 这里需要注意的是我们产生的验证码是彩色的,我们不需要,所以压迫转灰度图。 def convert2gray(img): """ 图片转为黑白,3维转1维 :param img: :return: """ if len(img.shape) > 2: img = np.mean(img, -1) return img
以上是一种简单的方法,十分好用。
前期训练得到的数据存储为文件,在预测时调用。
预测结果不一定准确,本实验中最好的准确度设为0.94,并不算好,所以在预测时有时还是有错误。