Skip to content

This is Llama_Traffic 🚗. A tool integrate traffic data into augmented generation.

License

Notifications You must be signed in to change notification settings

KIT-MRT/llama_traffic

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Llama_traffic

Llama_Traffic

The generation of realistic high quality trajectories is a major bottleneck in the creation of autonomous driving agents.

Model arch

Llama_Traffic tackles this problem by facilitating the language-based creation of original trajectories.

Table of Contents

  1. Introduction
  2. Installation
  3. Usage
  4. Features
    1. Functions
    2. Models
  5. License
  6. Acknowledgements
  7. Contact

Introduction

This project constitutes a CLI to handle the [Waymo Open Dataset](Open Dataset – Waymo). Its main purpose is to explore different models for trajectory two dimensional prediction. For an overview of the different models implemented see the section

Installation

==Please make sure that you have [conda installed](Installation — conda 23.10.1.dev61 documentation).==

# Clone the repository e.g.:
git clone https://github.com/PaulKMueller/llama_traffic.git

# Go into project folder ("llama_traffic")
cd llama_traffic

# Create conda environment and install the necessary dependencies
conda env create -f environment.yml

Usage

Starting the Command Line Interface

The entry point to the CLI is the cly.py. You can start it the following way:

# Start the CLI
python cli.py

# Show all available commands
help

Features

Functions

get_zipped_data
classification
clear_buckets help
clear_output_folder infer_with_neural_network
create_neural_network init_bucket_embeddings
create_transformer_model list_scenarios
exit load_scenario
filter_trajectories plot_all_trajectories
get_bert_embedding plot_map
get_bucket_embedding plot_predicted_trajectory
get_cohere_similarities plot_raw_coordinates_without_scenario get_coordinates plot_scenario
get_delta_angles_for_vehicle plot_spline
get_direction plot_trajectory
get_displacement plot_vehicle
get_positional_encoding print_current_raw_scenario
get_scenario_index store_raw_scenario
get_scenario_labeled_trajectories test_trajectory_bucketing
get_similarity total_delta_angle_for_vehicle
get_spline train_neural_network
get_total_angle_for_vehicle train_transformer_network
get_trajectories_for_text_input training_data_length
get_vehicles_in_loaded_scenario visualize_trajectory

Models

License

Copyright 2023 Paul Müller

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About

This is Llama_Traffic 🚗. A tool integrate traffic data into augmented generation.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%