This repository contains the source code for our paper:
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching
Lahav Lipson, Zachary Teed and Jia Deng
@article{lipson2021raft,
title={{RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching}},
author={Lipson, Lahav and Teed, Zachary and Deng, Jia},
journal={arXiv preprint arXiv:2109.07547},
year={2021}
}
The code has been tested with PyTorch 1.7 and Cuda 10.2.
conda env create -f environment.yaml
conda activate raftstereo
To evaluate/train RAFT-stereo, you will need to download the required datasets.
- Sceneflow (Includes FlyingThings3D, Driving & Monkaa
- Middlebury
- ETH3D
- KITTI
To download the ETH3D and Middlebury test datasets for the demos, run
chmod ug+x download_datasets.sh && ./download_datasets.sh
By default stereo_datasets.py
will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the datasets
folder
├── datasets
├── FlyingThings3D
├── frames_cleanpass
├── frames_finalpass
├── disparity
├── Monkaa
├── frames_cleanpass
├── frames_finalpass
├── disparity
├── Driving
├── frames_cleanpass
├── frames_finalpass
├── disparity
├── KITTI
├── testing
├── training
├── devkit
├── Middlebury
├── MiddEval3
├── ETH3D
├── two_view_testing
Pretrained models can be downloaded by running
chmod ug+x download_models.sh && ./download_models.sh
or downloaded from google drive. We recommend our Middlebury model for in-the-wild images.
You can demo a trained model on pairs of images. To predict stereo for Middlebury, run
python demo.py --restore_ckpt models/raftstereo-middlebury.pth --corr_implementation alt --mixed_precision -l=datasets/Middlebury/MiddEval3/testF/*/im0.png -r=datasets/Middlebury/MiddEval3/testF/*/im1.png
Or for ETH3D:
python demo.py --restore_ckpt models/raftstereo-eth3d.pth -l=datasets/ETH3D/two_view_testing/*/im0.png -r=datasets/ETH3D/two_view_testing/*/im1.png
Our fastest model (uses the faster implementation):
python demo.py --restore_ckpt models/raftstereo-realtime.pth --shared_backbone --n_downsample 3 --n_gru_layers 2 --slow_fast_gru --valid_iters 7 --corr_implementation reg_cuda --mixed_precision
To save the disparity values as .npy
files, run any of the demos with the --save_numpy
flag.
If the camera intrinsics and camera baseline are known, disparity predictions can be converted to depth values using
Note that the units of the focal length are pixels not millimeters. (cx1-cx0) is the x-difference of principal points.
To evaluate a trained model on a validation set (e.g. Middlebury), run
python evaluate_stereo.py --restore_ckpt models/raftstereo-middlebury.pth --dataset middlebury_H
Our model is trained on two RTX-6000 GPUs using the following command. Training logs will be written to runs/
which can be visualized using tensorboard.
python train_stereo.py --batch_size 8 --train_iters 22 --valid_iters 32 --spatial_scale -0.2 0.4 --saturation_range 0 1.4 --n_downsample 2 --num_steps 200000 --mixed_precision
To train using significantly less memory, change --n_downsample 2
to --n_downsample 3
. This will slightly reduce accuracy.
We provide a faster CUDA implementation of the correlation volume which works with mixed precision feature maps.
cd sampler && python setup.py install && cd ..
Running demo.py, train_stereo.py or evaluate.py with --corr_implementation reg_cuda
together with --mixed_precision
will speed up the model without impacting performance.
To significantly decrease memory consumption on high resolution images, use --corr_implementation alt
. This implementation is slower than the default, however.