forked from microsoft/AI-For-Beginners
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Minor env corrections - move opencv to conda install
- Loading branch information
Showing
5 changed files
with
113 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
import builtins | ||
import torch | ||
import torchtext | ||
import collections | ||
import os | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
vocab = None | ||
tokenizer = torchtext.data.utils.get_tokenizer('basic_english') | ||
|
||
def load_dataset(ngrams=1,min_freq=1): | ||
global vocab, tokenizer | ||
print("Loading dataset...") | ||
train_dataset, test_dataset = torchtext.datasets.AG_NEWS(root='./data') | ||
train_dataset = list(train_dataset) | ||
test_dataset = list(test_dataset) | ||
classes = ['World', 'Sports', 'Business', 'Sci/Tech'] | ||
print('Building vocab...') | ||
counter = collections.Counter() | ||
for (label, line) in train_dataset: | ||
counter.update(torchtext.data.utils.ngrams_iterator(tokenizer(line),ngrams=ngrams)) | ||
vocab = torchtext.vocab.vocab(counter, min_freq=min_freq) | ||
return train_dataset,test_dataset,classes,vocab | ||
|
||
stoi_hash = {} | ||
def encode(x,voc=None,unk=0,tokenizer=tokenizer): | ||
global stoi_hash | ||
v = vocab if voc is None else voc | ||
if v in stoi_hash.keys(): | ||
stoi = stoi_hash[v] | ||
else: | ||
stoi = v.get_stoi() | ||
stoi_hash[v]=stoi | ||
return [stoi.get(s,unk) for s in tokenizer(x)] | ||
|
||
def train_epoch(net,dataloader,lr=0.01,optimizer=None,loss_fn = torch.nn.CrossEntropyLoss(),epoch_size=None, report_freq=200): | ||
optimizer = optimizer or torch.optim.Adam(net.parameters(),lr=lr) | ||
loss_fn = loss_fn.to(device) | ||
net.train() | ||
total_loss,acc,count,i = 0,0,0,0 | ||
for labels,features in dataloader: | ||
optimizer.zero_grad() | ||
features, labels = features.to(device), labels.to(device) | ||
out = net(features) | ||
loss = loss_fn(out,labels) #cross_entropy(out,labels) | ||
loss.backward() | ||
optimizer.step() | ||
total_loss+=loss | ||
_,predicted = torch.max(out,1) | ||
acc+=(predicted==labels).sum() | ||
count+=len(labels) | ||
i+=1 | ||
if i%report_freq==0: | ||
print(f"{count}: acc={acc.item()/count}") | ||
if epoch_size and count>epoch_size: | ||
break | ||
return total_loss.item()/count, acc.item()/count | ||
|
||
def padify(b,voc=None,tokenizer=tokenizer): | ||
# b is the list of tuples of length batch_size | ||
# - first element of a tuple = label, | ||
# - second = feature (text sequence) | ||
# build vectorized sequence | ||
v = [encode(x[1],voc=voc,tokenizer=tokenizer) for x in b] | ||
# compute max length of a sequence in this minibatch | ||
l = max(map(len,v)) | ||
return ( # tuple of two tensors - labels and features | ||
torch.LongTensor([t[0]-1 for t in b]), | ||
torch.stack([torch.nn.functional.pad(torch.tensor(t),(0,l-len(t)),mode='constant',value=0) for t in v]) | ||
) | ||
|
||
def offsetify(b,voc=None): | ||
# first, compute data tensor from all sequences | ||
x = [torch.tensor(encode(t[1],voc=voc)) for t in b] | ||
# now, compute the offsets by accumulating the tensor of sequence lengths | ||
o = [0] + [len(t) for t in x] | ||
o = torch.tensor(o[:-1]).cumsum(dim=0) | ||
return ( | ||
torch.LongTensor([t[0]-1 for t in b]), # labels | ||
torch.cat(x), # text | ||
o | ||
) | ||
|
||
def train_epoch_emb(net,dataloader,lr=0.01,optimizer=None,loss_fn = torch.nn.CrossEntropyLoss(),epoch_size=None, report_freq=200,use_pack_sequence=False): | ||
optimizer = optimizer or torch.optim.Adam(net.parameters(),lr=lr) | ||
loss_fn = loss_fn.to(device) | ||
net.train() | ||
total_loss,acc,count,i = 0,0,0,0 | ||
for labels,text,off in dataloader: | ||
optimizer.zero_grad() | ||
labels,text = labels.to(device), text.to(device) | ||
if use_pack_sequence: | ||
off = off.to('cpu') | ||
else: | ||
off = off.to(device) | ||
out = net(text, off) | ||
loss = loss_fn(out,labels) #cross_entropy(out,labels) | ||
loss.backward() | ||
optimizer.step() | ||
total_loss+=loss | ||
_,predicted = torch.max(out,1) | ||
acc+=(predicted==labels).sum() | ||
count+=len(labels) | ||
i+=1 | ||
if i%report_freq==0: | ||
print(f"{count}: acc={acc.item()/count}") | ||
if epoch_size and count>epoch_size: | ||
break | ||
return total_loss.item()/count, acc.item()/count | ||
|