Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bumped version and compat entries #85

Merged
merged 4 commits into from
Aug 23, 2023
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ConformalPrediction"
uuid = "98bfc277-1877-43dc-819b-a3e38c30242f"
authors = ["Patrick Altmeyer"]
version = "0.1.8"
version = "0.1.9"

[deps]
CategoricalArrays = "324d7699-5711-5eae-9e2f-1d82baa6b597"
Expand All @@ -26,6 +26,7 @@ Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
[compat]
CategoricalArrays = "0.10"
ChainRules = "1.49.0"
ComputationalResources = "0.3"
Flux = "0.13.16, 0.14"
MLJBase = "0.20, 0.21"
MLJEnsembles = "0.3.3"
Expand All @@ -34,7 +35,9 @@ MLJModelInterface = "1"
MLUtils = "0.4.2"
NaturalSort = "1"
Plots = "1"
ProgressMeter = "1"
StatsBase = "0.33, 0.34.0"
Tables = "1"
julia = "1.7, 1.8, 1.9"

[extras]
Expand Down
25 changes: 13 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

![](dev/logo/wide_logo.png)

[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliatrustworthyai.github.io/ConformalPrediction.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliatrustworthyai.github.io/ConformalPrediction.jl/dev/) [![Build Status](https://github.com/juliatrustworthyai/ConformalPrediction.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/juliatrustworthyai/ConformalPrediction.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/juliatrustworthyai/ConformalPrediction.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/juliatrustworthyai/ConformalPrediction.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![ColPrac: Contributor’s Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet.png)](https://github.com/SciML/ColPrac) [![Twitter Badge](https://img.shields.io/twitter/url/https/twitter.com/paltmey.svg?style=social&label=Follow%20%40paltmey)](https://twitter.com/paltmey)
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliatrustworthyai.github.io/ConformalPrediction.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliatrustworthyai.github.io/ConformalPrediction.jl/dev/) [![Build Status](https://github.com/juliatrustworthyai/ConformalPrediction.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/juliatrustworthyai/ConformalPrediction.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/juliatrustworthyai/ConformalPrediction.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/juliatrustworthyai/ConformalPrediction.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![License](https://img.shields.io/github/license/juliatrustworthyai/ConformalPrediction.jl)](LICENSE) [![Package Downloads](https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/ConformalPrediction/.png)](https://pkgs.genieframework.com?packages=ConformalPrediction)

`ConformalPrediction.jl` is a package for Predictive Uncertainty Quantification (UQ) through Conformal Prediction (CP) in Julia. It is designed to work with supervised models trained in [MLJ](https://alan-turing-institute.github.io/MLJ.jl/dev/) (Blaom et al. 2020). Conformal Prediction is easy-to-understand, easy-to-use and model-agnostic and it works under minimal distributional assumptions.

Expand Down Expand Up @@ -71,7 +71,7 @@ X = reshape(X, :, 1)

# Outputs:
noise = 0.5
fun(X) = X * sin(X)
fun(X) = sin(X)
ε = randn(N) .* noise
y = @.(fun(X)) + ε
y = vec(y)
Expand Down Expand Up @@ -111,11 +111,11 @@ ŷ[1:show_first]
```

5-element Vector{Tuple{Float64, Float64}}:
(-0.40997718991694765, 1.449009293726001)
(0.8484810430118421, 2.7074675266547907)
(0.547852151594671, 2.4068386352376194)
(-0.022697652913589494, 1.8362888307293592)
(0.07435130847990101, 1.9333377921228496)
(0.0458889297242715, 1.9182762960257687)
(-1.9174452847238976, -0.04505791842240037)
(-1.2544275358451678, 0.6179598304563294)
(-0.2818835218505735, 1.5905038444509236)
(0.01299565032151917, 1.8853830166230163)

For simple models like this one, we can call a custom `Plots` recipe on our instance, fit result and data to generate the chart below:

Expand All @@ -138,8 +138,6 @@ println("Empirical coverage: $(round(_eval.measurement[1], digits=3))")
println("SSC: $(round(_eval.measurement[2], digits=3))")
```

Started!

PerformanceEvaluation object with these fields:
measure, operation, measurement, per_fold,
per_observation, fitted_params_per_fold,
Expand All @@ -148,11 +146,14 @@ println("SSC: $(round(_eval.measurement[2], digits=3))")
┌──────────────────────────────────────────────┬───────────┬─────────────┬──────
│ measure │ operation │ measurement │ 1.9 ⋯
├──────────────────────────────────────────────┼───────────┼─────────────┼──────
│ ConformalPrediction.emp_coverage │ predict │ 0.945 │ 0.0 ⋯
│ ConformalPrediction.size_stratified_coverage │ predict │ 0.945 │ 0.0 ⋯
│ ConformalPrediction.emp_coverage │ predict │ 0.948 │ 0.0 ⋯
│ ConformalPrediction.size_stratified_coverage │ predict │ 0.948 │ 0.0 ⋯
└──────────────────────────────────────────────┴───────────┴─────────────┴──────
2 columns omitted

Empirical coverage: 0.948
SSC: 0.948

## 📚 Read on

If after reading the usage example above you are just left with more questions about the topic, that’s normal. Below we have have collected a number of further resources to help you get started with this package and the topic itself:
Expand Down Expand Up @@ -231,7 +232,7 @@ There is also a simple `Plots.jl` recipe that can be used to inspect the set siz
bar(mach.model, mach.fitresult, X)
```

![](README_files/figure-commonmark/cell-11-output-1.svg)
![](README_files/figure-commonmark/cell-12-output-1.svg)

## 🛠 Contribute

Expand Down
4 changes: 2 additions & 2 deletions README.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ jupyter: julia-1.9
[![Build Status](https://github.com/juliatrustworthyai/ConformalPrediction.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/juliatrustworthyai/ConformalPrediction.jl/actions/workflows/CI.yml?query=branch%3Amain)
[![Coverage](https://codecov.io/gh/juliatrustworthyai/ConformalPrediction.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/juliatrustworthyai/ConformalPrediction.jl)
[![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle)
[![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor's%20Guide-blueviolet)](https://github.com/SciML/ColPrac)
[![Twitter Badge](https://img.shields.io/twitter/url/https/twitter.com/paltmey.svg?style=social&label=Follow%20%40paltmey)](https://twitter.com/paltmey)
[![License](https://img.shields.io/github/license/juliatrustworthyai/ConformalPrediction.jl)](LICENSE)
[![Package Downloads](https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/ConformalPrediction/)](https://pkgs.genieframework.com?packages=ConformalPrediction)

{{< include docs/src/_intro.qmd >}}
Loading