Skip to content

Commit

Permalink
slight refactor
Browse files Browse the repository at this point in the history
  • Loading branch information
mohamed82008 committed Nov 15, 2023
1 parent 9d49d84 commit f1c78ab
Show file tree
Hide file tree
Showing 3 changed files with 45 additions and 32 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "NonconvexBayesian"
uuid = "fb352abc-de7b-48de-9ebd-665b54b5d9b3"
authors = ["Mohamed Tarek <[email protected]> and contributors"]
version = "0.1.4"
version = "0.1.5"

[deps]
AbstractGPs = "99985d1d-32ba-4be9-9821-2ec096f28918"
Expand Down
63 changes: 32 additions & 31 deletions src/bayesian.jl
Original file line number Diff line number Diff line change
Expand Up @@ -135,31 +135,32 @@ function (s::ZeroOrderGPSurrogate)(x)
return Interval.(y, y)
else
if eltype(s.y) <: Real
_m, _v = mean_and_var(posterior(
s.gps[1](s.X, s.noise), s.y,
), [x])
m, v = _m[1], _v[1]
return _call_gp(s.gps[1], x, s.X, s.y, s.noise, s.std_multiple)
else
ms_vs = map(1:s.N) do i
_gp = s.gps[i](s.X, s.noise)
mean_and_var(posterior(_gp, getindex.(s.y, i)), [x])
end
m = reduce(vcat, getindex.(ms_vs, 1))
v = reduce(vcat, getindex.(ms_vs, 2))
return map(i -> _call_gp(s.gps[i], x, s.X, getindex.(s.y, i), s.noise, s.std_multiple), 1:length(s.gps))
end
r = s.std_multiple .* sqrt.(v)
return Interval.(m .- r, m .+ r)
end
end

function _call_gp(gp, x, X, y, noise, std_multiple)
_m, _v = mean_and_var(posterior(
gp(X, noise), y,
), [x])
m, v = _m[1], _v[1]
r = std_multiple * sqrt(v)
return Interval(m - r, m + r)
end

function surrogate(f, x; kwargs...)
s = ZeroOrderGPSurrogate(f, x; mode = :exact, kwargs...)
s(x)
s.mode = :interval
return s
end

_lower_f(s) = x -> getproperty.(s(x), :lo)
get_lo(x) = x.lo
get_lo(x::AbstractVector) = map(get_lo, x)
_lower_f(s) = get_lo s
_equality_f(s) = x -> begin
t = s(x)
return [getproperty.(t, :lo); .- getproperty(t, :hi)]
Expand Down Expand Up @@ -187,14 +188,14 @@ function surrogate_model(vecmodel::VecModel; kwargs...)
!(:expensive in c.flags)
end
eq_constraints = VectorOfFunctions(cheap_eq_constraints)
ineq_constraints1 = mapreduce(vcat, expensive_eq_constraints; init = Union{}[]) do c
ineq_constraints1 = Tuple(mapreduce(vcat, expensive_eq_constraints; init = Union{}[]) do c
@assert c isa EqConstraint
s = surrogate(c, copy(x0); kwargs...)
push!(surrogates, s)
return IneqConstraint(
_equality_f(s), [zero.(c.rhs); zero.(c.rhs)], c.dim * 2, c.flags,
)
end
end)
ineq_constraints2 = map(vecmodel.ineq_constraints.fs) do c
@assert c isa IneqConstraint
if :expensive in c.flags
Expand All @@ -208,11 +209,11 @@ function surrogate_model(vecmodel::VecModel; kwargs...)
end
end
ineq_constraints = VectorOfFunctions(
vcat(ineq_constraints1, ineq_constraints2),
(ineq_constraints1..., ineq_constraints2...),
)
return VecModel(
obj, eq_constraints, ineq_constraints, vecmodel.sd_constraints, vecmodel.box_min, vecmodel.box_max, vecmodel.init, vecmodel.integer,
), surrogates
), Tuple(surrogates)
end

function update_surrogates!(model, surrogates, x)
Expand All @@ -228,15 +229,15 @@ function update_surrogates!(model, surrogates, x)
return o, i, e
end

@params struct BayesOptOptions
sub_options
struct BayesOptOptions{S, N <: NamedTuple}
sub_options::S
maxiter::Int
initialize::Bool
ninit::Int
ctol::Float64
ftol::Float64
postoptimize::Bool
nt::NamedTuple
nt::N
end
function BayesOptOptions(;
sub_options = IpoptOptions(),
Expand Down Expand Up @@ -276,20 +277,20 @@ function BayesOptOptions(;
)
end

@params mutable struct BayesOptWorkspace <: Workspace
model::VecModel
sub_workspace
x0::AbstractVector
options::BayesOptOptions
surrogates::AbstractVector
mutable struct BayesOptWorkspace{M <: VecModel, S1, X <: AbstractVector, O <: BayesOptOptions, S2 <: Union{Tuple, AbstractVector}} <: Workspace
model::M
sub_workspace::S1
x0::X
options::O
surrogates::S2
end

@params struct BayesOptResult <: AbstractResult
minimizer
minimum
struct BayesOptResult{M1, M2, S1 <: AbstractResult, S2} <: AbstractResult
minimizer::M1
minimum::M2
niters::Int
sub_result::AbstractResult
surrogates
sub_result::S1
surrogates::S2
end

# ScaledSobolIterator adapted from BayesianOptimization.jl
Expand Down
12 changes: 12 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,18 @@ using LinearAlgebra, Test
f(x::AbstractVector) = sqrt(x[2])
g(x::AbstractVector, a, b) = (a*x[1] + b)^3 - x[2]

@testset "Surrogate" begin
x = zeros(2)

sf1 = NonconvexBayesian.ZeroOrderGPSurrogate(sum, x)
lsf1 = NonconvexBayesian._lower_f(sf1)
Zygote.gradient(lsf1, x)

sf2 = NonconvexBayesian.ZeroOrderGPSurrogate(x -> x.^2, x)
lsf2 = NonconvexBayesian._lower_f(sf2)
Zygote.jacobian(lsf2, x)
end

@testset "Cheap objective and constraints" begin
@testset "Fit prior: $fit_prior" for fit_prior in (true, false)
m = Model()
Expand Down

0 comments on commit f1c78ab

Please sign in to comment.