Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Nonlinear SDP interior point meta-algorithm #106

Merged
merged 25 commits into from
Aug 29, 2021
Merged
Show file tree
Hide file tree
Changes from 19 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -20,13 +20,13 @@ Optim = "429524aa-4258-5aef-a3af-852621145aeb"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
Parameters = "d96e819e-fc66-5662-9728-84c9c7592b0a"
PyPlot = "d330b81b-6aea-500a-939a-2ce795aea3ee"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
Setfield = "efcf1570-3423-57d1-acb7-fd33fddbac46"
Sobol = "ed01d8cd-4d21-5b2a-85b4-cc3bdc58bad4"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"

[compat]
ADNLPModels = "0.1, 0.2, 0.3"
Expand Down Expand Up @@ -55,6 +55,8 @@ Zygote = "0.6"
julia = "1"

[extras]
ChainRulesTestUtils = "cdddcdb0-9152-4a09-a978-84456f9df70a"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000"
Hyperopt = "93e5fe13-2215-51db-baaf-2e9a34fb2712"
Juniper = "2ddba703-00a4-53a7-87a5-e8b9971dde84"
Expand All @@ -65,4 +67,4 @@ SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["FiniteDifferences", "Hyperopt", "Juniper", "NLopt", "Pavito", "Percival", "SafeTestsets", "Test"]
test = ["FiniteDifferences", "Hyperopt", "Juniper", "NLopt", "Pavito", "Percival", "SafeTestsets", "Distributions", "Test", "ChainRulesTestUtils"]
7 changes: 7 additions & 0 deletions src/Nonconvex.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ export Model,
set_objective!,
add_ineq_constraint!,
add_eq_constraint!,
add_sd_constraint!,
decompress_symmetric,
getmin,
getmax,
isinteger,
Expand All @@ -32,6 +34,7 @@ export Model,
PavitoIpoptCbcAlg,
HyperoptAlg,
BayesOptAlg,
SDPBarrierAlg,
MTSAlg,
LS1Alg,
KKTCriteria,
Expand All @@ -47,6 +50,7 @@ export Model,
PavitoIpoptCbcOptions,
HyperoptOptions,
BayesOptOptions,
SDPBarrierOptions,
MTSOptions,
LS1Options,
Tolerance,
Expand Down Expand Up @@ -126,6 +130,9 @@ include("algorithms/mts.jl")

include("algorithms/deflation.jl")

# Semi-definite programming
include("algorithms/sdp.jl")

# Wrappers

include("wrappers/moi.jl")
Expand Down
11 changes: 11 additions & 0 deletions src/algorithms/common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,7 @@ end

abstract type AbstractModel end


"""
```
optimize(
Expand All @@ -224,6 +225,7 @@ optimize(
callback::Function = plot_trace ? LazyPlottingCallback() : NoCallback(),
kwargs...,
)

```

Optimizes `model` using the algorithm `optimizer`, e.g. an instance of [`MMA87`](@ref) or [`MMA02`](@ref). `x0` is the initial solution. The keyword arguments are:
Expand All @@ -234,7 +236,14 @@ Optimizes `model` using the algorithm `optimizer`, e.g. an instance of [`MMA87`]

The details of the MMA optimization algorithms can be found in the original [1987 MMA paper](https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207) and the [2002 paper](https://epubs.siam.org/doi/abs/10.1137/S1052623499362822).
"""
function _optimize_precheck(model::AbstractModel, optimizer::AbstractOptimizer, args...; options=nothing, kwargs...)
if (length(model.sd_constraints.fs) != 0) && !(options isa SDPBarrierOptions)
@warn "Input `sd_constraints` will be ignored due to not using `SDPBarrierOptions`. "
end
end

function optimize(model::AbstractModel, optimizer::AbstractOptimizer, x0, args...; kwargs...)
_optimize_precheck(model, optimizer, x0, args...; kwargs...)
_model, _x0, unflatten = tovecmodel(model, x0)
r = optimize(_model, optimizer, _x0, args...; kwargs...)
return @set r.minimizer = unflatten(r.minimizer)
Expand All @@ -244,11 +253,13 @@ end
optimize without x0
"""
function optimize(model::AbstractModel, optimizer::AbstractOptimizer, args...; kwargs...)
_optimize_precheck(model, optimizer, args...; kwargs...)
_model, _, unflatten = tovecmodel(model)
r = optimize(_model, optimizer, args...; kwargs...)
return @set r.minimizer = unflatten(r.minimizer)
end


"""
Clamp the box constraint and evaluate objective function at point x
"""
Expand Down
2 changes: 1 addition & 1 deletion src/algorithms/mma_algorithm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -235,6 +235,7 @@ function optimize!(workspace::MMAWorkspace)

# Evaluates the exact objective and constraints and their gradients at the optimal x
optimalx = getoptimalx(dualmodel)

fg, ∇fg = value_jacobian(
approxmodel.objective_ineq_constraints,
optimalx,
Expand All @@ -245,7 +246,6 @@ function optimize!(workspace::MMAWorkspace)
# Reduces the chance of overflow or underflow in λs
# Helps with the convergence
auto_scale && iter < 5 && scaleobjective!(model, fg, ∇fg, approxfg, λ)
#iter < 10 && scaleobjective!(model, fg, ∇fg, approxfg, λ)
pizhn marked this conversation as resolved.
Show resolved Hide resolved

# Check if the approximation is an upper bound at the current x.
# If not, increase ρ. Only used in MMA02
Expand Down
137 changes: 137 additions & 0 deletions src/algorithms/sdp.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
# Semidefinite programming

# Decompress
function lowertriangind(mat::Matrix)
indices = [i for i in CartesianIndices(mat) if i[1]>i[2]]
return LinearIndices(mat)[indices]
end

function rearrange_x(x_L::AbstractVector, x_D::AbstractVector)
mat_dim = length(x_D)
L = zeros(mat_dim, mat_dim)
L[lowertriangind(L)] .= x_L
D = diagm(x_D)
return (L, D)
end

function decompress_symmetric(L::Matrix, D::Matrix)
L + D + L'
end

function decompress_symmetric(x_L::AbstractArray, x_D::AbstractArray)
L, D = rearrange_x(x_L, x_D)
return decompress_symmetric(L, D)
end

function ChainRulesCore.rrule(::typeof(rearrange_x), x_L::AbstractVector, x_D::AbstractVector)
function pullback((ΔL, ΔD))
Δx_L = ΔL[lowertriangind(ΔL)]
Δx_D = diag(ΔD)
NoTangent(), Δx_L, Δx_D
end
return rearrange_x(x_L, x_D), pullback
end


# Optimizer (algorithm)
struct SDPBarrierAlg{Alg <: AbstractOptimizer} <: AbstractOptimizer
sub_alg::Alg
end
function SDPBarrierAlg(;sub_alg)
return SDPBarrierAlg(sub_alg)
end

# Options
mutable struct SDPBarrierOptions
# Dimension of objective matrix
# Hyperparameters
# Initial value of `c` in barrier method:
# `Real` for using same value for all `sd_constraints`, `AbstractArray` for assign them respectively
c_init::Union{Real, AbstractArray}
# Decrease rate of `c` for every epoch, same as above
c_decr::Union{Real, AbstractArray}
n_iter::Int
# sub_option to solve (in)equality constraints
sub_options
# Keep all results or not
keep_all::Bool
end
function SDPBarrierOptions(c_init, c_decr, n_iter; sub_options, keep_all=true)
pizhn marked this conversation as resolved.
Show resolved Hide resolved
@assert 0 < c_decr < 1 "c_decr should be between 0 and 1. "
@assert c_init > 0 "c_init shoule be larger than 0. "
SDPBarrierOptions(c_init, c_decr, n_iter, sub_options, keep_all)
end
function SDPBarrierOptions(;c_init, c_decr, n_iter, sub_options, keep_all=true)
pizhn marked this conversation as resolved.
Show resolved Hide resolved
SDPBarrierOptions(c_init, c_decr, n_iter, sub_options=sub_options, keep_all=keep_all)
end

# Result
@params struct SDPResult
minimum
minimizer
results
optimal_ind
end

@params struct SDPWorkspace <: Workspace
model::VecModel
x0::AbstractVector
options::SDPBarrierOptions
sub_alg::AbstractOptimizer
end

function Workspace(model::VecModel, optimizer::SDPBarrierAlg, x0, args...; options, kwargs...,)
@unpack c_init, c_decr = options
for c in model.sd_constraints.fs
@assert isposdef(c(x0)) "Initial matrix should be positive definite. "
end
if c_init isa AbstractArray
@assert length(model.sd_constraints.fs) == length(c_init) "c_init should be same length with number of `sd_constraints` when using array. "
end
if c_decr isa AbstractArray
@assert length(model.sd_constraints.fs) == length(c_decr) "c_decr should be same length with number of `sd_constraints` when using array. "
end
if c_init isa AbstractArray && c_decr isa AbstractArray
@assert length(c_init) == length(c_decr) "c_decr should be same length with c_init. "
end
return SDPWorkspace(model, copy(x0), options, optimizer.sub_alg)
end

function sd_objective(objective0, sd_constraints, c::AbstractArray)
function _objective(args)
target = objective0(args)
barrier = sum(c .* -logdet.(sd_constraints.fs.(args)))
return target + barrier
end
return _objective
end

function to_barrier(model, c::AbstractArray)
sd_constraints, objective0 = model.sd_constraints, model.objective
_model = set_objective(model, sd_objective(objective0, sd_constraints, c))
return _model
end

function optimize!(workspace::SDPWorkspace)
@unpack model, x0, options, sub_alg = workspace
@unpack c_init, c_decr, n_iter, sub_options, keep_all = options
objective0 = model.objective
x = copy(x0)
c = c_init isa Real ? ([c_init for _ in 1:length(model.sd_constraints.fs)]) : c_init
results = []
for _ in 1:n_iter
model_i = to_barrier(model, c)
result_i = optimize(model_i, sub_alg, x, options = sub_options)
minimizer_i = result_i.minimizer
push!(results, (objective0(minimizer_i), minimizer_i))
c = c .* c_decr
x = copy(minimizer_i)
end
optimal_ind = argmin(first.(results))
pizhn marked this conversation as resolved.
Show resolved Hide resolved
minimum, minimizer = results[optimal_ind]
if keep_all
pizhn marked this conversation as resolved.
Show resolved Hide resolved
return SDPResult(minimum, minimizer, results, optimal_ind)
else
return SDPResult(minimum, minimizer, nothing, nothing)
end
end
22 changes: 22 additions & 0 deletions src/functions/functions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -273,3 +273,25 @@ getdim(c::EqConstraint) = c.dim
Returns the function wrapped in `f`.
"""
getfunction(f::EqConstraint) = f.f


"""

Used in semidefinite programming
"""
@params struct SDConstraint <: AbstractConstraint
f::Function
dim::Int
end

function (c::SDConstraint)(args...; kwargs...)
out = c.f(args...; kwargs...)
# println(length(out))
pizhn marked this conversation as resolved.
Show resolved Hide resolved
# println(getdim(c))
@assert length(out) == getdim(c)^2
return out
end

getdim(c::SDConstraint) = c.dim

getfunction(c::SDConstraint) = c.f
2 changes: 2 additions & 0 deletions src/models/dict_model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ mutable struct DictModel <: AbstractModel
objective::Union{Nothing, Objective}
eq_constraints::VectorOfFunctions
ineq_constraints::VectorOfFunctions
sd_constraints::VectorOfFunctions
box_min::OrderedDict
box_max::OrderedDict
init::OrderedDict
Expand All @@ -12,6 +13,7 @@ function DictModel(f = nothing)
return DictModel(
Objective(f), VectorOfFunctions(EqConstraint[]),
VectorOfFunctions(IneqConstraint[]),
VectorOfFunctions(SDConstraint[]),
OrderedDict(), OrderedDict(),
OrderedDict(), OrderedDict()
)
Expand Down
22 changes: 21 additions & 1 deletion src/models/model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,13 @@ The `Model` structs stores information about the nonlinear optimization problem.
- `objective`: the objective function of the problem of type [`Objective`](@ref).
- `eq_constraints`: the equality constraints of the problem of type [`VectorOfFunctions`](@ref). Each function in `ineq_constraints` can be an instance of [`IneqConstraint`](@ref) or [`AbstractFunction`](@ref). If the function is not an `IneqConstraint`, its right-hand-side bound is assumed to be 0.
- `ineq_constraints`: the inequality constraints of the problem of type [`VectorOfFunctions`](@ref). Each function in `ineq_constraints` can be an instance of [`IneqConstraint`](@ref) or [`AbstractFunction`](@ref). If the function is not an `IneqConstraint`, its right-hand-side bound is assumed to be 0.
- `sd_constraints`: used for semidefinite programming: a list of functions that each of them accepts same input as `objective` and returns a optimization target matrix
mohamed82008 marked this conversation as resolved.
Show resolved Hide resolved
"""
mutable struct Model{Tv <: AbstractVector} <: AbstractModel
objective::Union{Nothing, Objective}
eq_constraints::VectorOfFunctions
ineq_constraints::VectorOfFunctions
sd_constraints::VectorOfFunctions
box_min::Tv
box_max::Tv
init::Tv
Expand All @@ -41,7 +43,12 @@ Constructs an empty model with objective function `f` and decision variable valu
"""
Model(::Type{T}, f::Function) where {T} = Model(T, Objective(f))
function Model(::Type{T}, obj::Union{Nothing, Objective}) where {T}
return Model(obj, VectorOfFunctions(EqConstraint[]), VectorOfFunctions(IneqConstraint[]), T[], T[], T[], falses(0))
return Model(obj,
VectorOfFunctions(EqConstraint[]),
VectorOfFunctions(IneqConstraint[]),
VectorOfFunctions(SDConstraint[]),
T[], T[], T[],
falses(0))
end

getobjective(m::AbstractModel) = m.objective
Expand Down Expand Up @@ -139,6 +146,11 @@ end

Sets the objective of the moodel `m` to the function `f`. `f` must return a scalar.
"""
function set_objective(m::AbstractModel, f::Function; kwargs...)
@set m.objective = Objective(f; kwargs...)
return m
end

function set_objective!(m::AbstractModel, f::Function; kwargs...)
m.objective = Objective(f; kwargs...)
return m
Expand Down Expand Up @@ -173,3 +185,11 @@ function add_eq_constraint!(m::AbstractModel, fs::Vector{<:EqConstraint})
append!(m.eq_constraints.fs, fs)
return m
end

function add_sd_constraint!(m::AbstractModel, f::Function, dim=size(f(getinit(m)))[1])
return add_sd_constraint!(m, SDConstraint(f, dim))
end
function add_sd_constraint!(m::AbstractModel, sd_constraint::AbstractFunction)
push!(m.sd_constraints.fs, sd_constraint)
return m
end
Loading