Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add in place integration #64

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 36 additions & 5 deletions src/HCubature.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
using StaticArrays, LinearAlgebra
import Combinatorics, DataStructures, QuadGK

export hcubature, hquadrature, hcubature_buffer
export hcubature, hcubature!, hquadrature, hcubature_buffer

include("genz-malik.jl")
include("gauss-kronrod.jl")
Expand All @@ -35,6 +35,7 @@
Base.isless(i::Box, j::Box) = isless(i.E, j.E)

cubrule(v::Val{n}, ::Type{T}) where {n,T} = GenzMalik(v, T)
cubrule(v::Val{n}, ::Type{T}, r::Q) where {n,T,Q} = GenzMalik_InPlace(v, T, r)
cubrule(::Val{1}, ::Type{T}) where {T} = GaussKronrod(T)

# trivial rule for 0-dimensional integrals
Expand Down Expand Up @@ -96,13 +97,13 @@
hcubature_buffer_(f, SVector{n}(float.(a)), SVector{n}(float.(b)), norm)
end

function hcubature_(f::F, a::SVector{n,T}, b::SVector{n,T}, norm, rtol_, atol, maxevals, initdiv, buf) where {F, n, T<:Real}
function hcubature_(f::F, a::SVector{n,T}, b::SVector{n,T}, norm, rtol_, atol, maxevals, initdiv, buf, rule) where {F, n, T<:Real}
rtol = rtol_ == 0 == atol ? sqrt(eps(T)) : rtol_
(rtol < 0 || atol < 0) && throw(ArgumentError("invalid negative tolerance"))
maxevals < 0 && throw(ArgumentError("invalid negative maxevals"))
initdiv < 1 && throw(ArgumentError("initdiv must be positive"))

rule = cubrule(Val{n}(), T)
#rule = cubrule(Val{n}(), T)
numevals = evals_per_box = countevals(rule)

Δ = (b-a) / initdiv
Expand Down Expand Up @@ -176,12 +177,34 @@
norm, rtol, atol, maxevals, initdiv, buf) where {T<:Real, S<:Real}
length(a) == length(b) || throw(DimensionMismatch("endpoints $a and $b must have the same length"))
F = float(promote_type(T, S))
return hcubature_(f, SVector{length(a),F}(a), SVector{length(a),F}(b), norm, rtol, atol, maxevals, initdiv, buf)
rule = cubrule(Val{length(a)}(), F)
return hcubature_(f, SVector{length(a),F}(a), SVector{length(a),F}(b), norm, rtol, atol, maxevals, initdiv, buf, rule)
end
function hcubature_(f, a::Tuple{Vararg{Real,n}}, b::Tuple{Vararg{Real,n}}, norm, rtol, atol, maxevals, initdiv, buf) where {n}
hcubature_(f, SVector{n}(float.(a)), SVector{n}(float.(b)), norm, rtol, atol, maxevals, initdiv, buf)
sa = SVector{n}(float.(a))
sb = SVector{n}(float.(b))
rule = cubrule(Val{length(sa)}(), eltype(sa))
hcubature_(f, sa, sb, norm, rtol, atol, maxevals, initdiv, buf, rule)
end


function hcubature_(result::Q, f!, a::AbstractVector{T}, b::AbstractVector{S},

Check warning on line 191 in src/HCubature.jl

View check run for this annotation

Codecov / codecov/patch

src/HCubature.jl#L191

Added line #L191 was not covered by tests
norm, rtol, atol, maxevals, initdiv, buf) where {Q, T<:Real, S<:Real}
length(a) == length(b) || throw(DimensionMismatch("endpoints $a and $b must have the same length"))
F = float(promote_type(T, S))
rule = cubrule(Val(length(a)), F, result)
return hcubature_(f!, SVector{length(a),F}(a), SVector{length(a),F}(b), norm, rtol, atol, maxevals, initdiv, buf, rule)

Check warning on line 196 in src/HCubature.jl

View check run for this annotation

Codecov / codecov/patch

src/HCubature.jl#L193-L196

Added lines #L193 - L196 were not covered by tests
end
function hcubature_(result::Q, f!, a::Tuple{Vararg{Real,n}}, b::Tuple{Vararg{Real,n}}, norm, rtol, atol, maxevals, initdiv, buf) where {n, Q}
sa = SVector{n}(float.(a))
sb = SVector{n}(float.(b))
rule = cubrule(Val(length(sa)), eltype(sa), result)
hcubature_(f!, sa, sb, norm, rtol, atol, maxevals, initdiv, buf, rule)
end




"""
hcubature(f, a, b; norm=norm, rtol=sqrt(eps), atol=0, maxevals=typemax(Int),
initdiv=1, buffer=nothing)
Expand Down Expand Up @@ -236,6 +259,14 @@
hcubature_(f, a, b, norm, rtol, atol, maxevals, initdiv, buffer)


function hcubature!(result, f!, a, b; norm=norm, rtol::Real=0, atol::Real=0,
maxevals::Integer=typemax(Int), initdiv::Integer=1, buffer=nothing)
(I, E) = hcubature_(result, f!, a, b, norm, rtol, atol, maxevals, initdiv, buffer)
result .= I
return I, E
end


"""
hquadrature(f, a, b; norm=norm, rtol=sqrt(eps), atol=0, maxevals=typemax(Int), initdiv=1)

Expand Down
110 changes: 109 additions & 1 deletion src/genz-malik.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,8 @@ function GenzMalik(v::Val{n}, ::Type{T}=Float64) where {n, T<:Real}
return g
end

countevals(g::GenzMalik{n}) where {n} = 1 + 4n + 2*n*(n-1) + (1<<n)

#countevals(g::GenzMalik{n}) where {n} = 1 + 4n + 2*n*(n-1) + (1<<n)

"""
genzmalik(f, a, b, norm=norm)
Expand Down Expand Up @@ -165,3 +166,110 @@ function (g::GenzMalik{n,T})(f::F, a::SVector{n}, b::SVector{n}, norm=norm) wher

return I, E, kdivide
end


struct GenzMalik_InPlace{n,T<:Real,Q}
p::NTuple{4,Vector{SVector{n,T}}} # points for the last 4 G-M weights
w::NTuple{5,T} # weights for the 5 terms in the G-M rule
w′::NTuple{4,T} # weights for the embedded lower-degree rule

# internal variables
f₁::Q
f₂::Q
f₃::Q
twelvef₁::Q
f₂ᵢ::Q
f₃ᵢ::Q
f₄::Q
f₅::Q
t::Q
end

countevals(g::Union{GenzMalik_InPlace{n},GenzMalik{n}}) where {n} = 1 + 4n + 2*n*(n-1) + (1<<n)

function GenzMalik_InPlace(v::Val{n}, ::Type{T}, r::Q) where {n, T<:Real, Q}
#haskey(gmcache, (n,T)) && return gmcache[n,T]::GenzMalik{n,T}

n < 2 && throw(ArgumentError("invalid dimension $n: GenzMalik rule requires dimension ≠ 2"))

λ₄ = sqrt(9/T(10))
λ₂ = sqrt(9/T(70))
λ₃ = λ₄
λ₅ = sqrt(9/T(19))

twoⁿ = 1 << n
w₁ = twoⁿ * ((12824 - 9120n + 400n^2) / T(19683))
w₂ = twoⁿ * (980 / T(6561))
w₃ = twoⁿ * ((1820 - 400n) / T(19683))
w₄ = twoⁿ * (200 / T(19683))
w₅ = 6859/T(19683)
w₄′ = twoⁿ * (25/T(729))
w₃′ = twoⁿ * ((265 - 100n)/T(1458))
w₂′ = twoⁿ * (245/T(486))
w₁′ = twoⁿ * ((729 - 950n + 50n^2)/T(729))

p₂ = combos(1, λ₂, v)
p₃ = combos(1, λ₃, v)
p₄ = signcombos(2, λ₄, v)
p₅ = signcombos(n, λ₅, v)

g = GenzMalik_InPlace{n,T,Q}((p₂,p₃,p₄,p₅), (w₁,w₂,w₃,w₄,w₅), (w₁′,w₂′,w₃′,w₄′),
similar(r), similar(r), similar(r), similar(r),
similar(r), similar(r), similar(r), similar(r),
similar(r))
#gmcache[n,T] = g
return g
end


function (g::GenzMalik_InPlace{n,T,Q})(f!::F, a::SVector{n}, b::SVector{n}, norm=norm) where {F, n,T,Q}
c = T(0.5).*(a.+b)
Δ = T(0.5).*(b.-a)
V = prod(Δ)

f!(g.f₁, c)
fill!(g.f₂, 0)
fill!(g.f₃, 0)
g.twelvef₁ .= 12g.f₁
maxdivdiff = zero(norm(g.f₁))
divdiff = similar(SVector{n,typeof(maxdivdiff)})
for i = 1:n
p₂ = Δ .* g.p[1][i]
f!(g.f₂ᵢ, c + p₂); f!(g.t, c - p₂); g.f₂ᵢ .+= g.t
p₃ = Δ .* g.p[2][i]
f!(g.f₃ᵢ, c + p₃); f!(g.t, c - p₃); g.f₃ᵢ .+= g.t
g.f₂ .+= g.f₂ᵢ
g.f₃ .+= g.f₃ᵢ
# fourth divided difference: f₃ᵢ-2f₁ - 7*(f₂ᵢ-2f₁),
# where 7 = (λ₃/λ₂)^2 [see van Dooren and de Ridder]
divdiff[i] = norm(g.f₃ᵢ + g.twelvef₁ - 7*g.f₂ᵢ)
end

fill!(g.f₄, 0)
for p in g.p[3]
f!(g.t, c .+ Δ .* p); g.f₄ .+= g.t
end

fill!(g.f₅, 0)
for p in g.p[4]
f!(g.t, c .+ Δ .* p); g.f₅ .+= g.t
end

I = V * (g.w[1]*g.f₁ + g.w[2]*g.f₂ + g.w[3]*g.f₃ + g.w[4]*g.f₄ + g.w[5]*g.f₅)
I′ = V * (g.w′[1]*g.f₁ + g.w′[2]*g.f₂ + g.w′[3]*g.f₃ + g.w′[4]*g.f₄)
E = norm(I - I′)

# choose axis
kdivide = 1
δf = E / (10^n * V)
for i = 1:n
if (δ = divdiff[i] - maxdivdiff) > δf
kdivide = i
maxdivdiff = divdiff[i]
elseif abs(δ) <= δf && abs(Δ[i]) > abs(Δ[kdivide])
kdivide = i
end
end

return I, E, kdivide
end
9 changes: 9 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -110,3 +110,12 @@ end
@test hquadrature(x -> exp(-x^2), T(0), T(1); rtol = 1e-20)[1] ≈ 0.7468241328124270254
@test hcubature(x -> exp(-x[1]^2), T.((0,0)), T.((1,1)); rtol = 1e-20)[1] ≈ 0.7468241328124270254
end

@testset "in place" begin
f(x) = [cos(x[1]) sin(x[2]); cos(x[1])^2 cos(x[2])^2]
f!(r, x) = r .= f(x)
result = zeros(2, 2)
I₁ = hcubature(f, (-1,0), (1,1))[1]
I₂ = hcubature!(result, f!, (-1,0), (1,1))[1]
@test I₁ ≈ I₂
end
Loading