Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Performance regression in Normed -> Float conversions on Julia v1.3.0 #144

Closed
kimikage opened this issue Nov 27, 2019 · 2 comments · Fixed by #145
Closed

Performance regression in Normed -> Float conversions on Julia v1.3.0 #144

kimikage opened this issue Nov 27, 2019 · 2 comments · Fixed by #145

Comments

@kimikage
Copy link
Collaborator

kimikage commented Nov 27, 2019

I have confirmed that Julia v1.2.0 and v1.3.0 give almost similar results on Normed->Float conversions (#129, #138). However, I found the performance regression (~2x - 3x slower) on x84_64 machines in the following cases:

  • Vec4{N0f32} -> Vec4{Float32}
  • Vec4{N0f64} -> Vec4{Float32}
  • Vec4{N0f64} -> Vec4{Float64}

(cf. #129 (comment))

I'm not going to rush to investigate the cause or fix this problem. I submit this issue as a placeholder in case any useful information is found.

@timholy
Copy link
Member

timholy commented Nov 27, 2019

I think those types are very niche. I'm not that worried.

@kimikage
Copy link
Collaborator Author

kimikage commented Nov 29, 2019

I agree, but my concern is the cause rather than the result. The investigation may help improve other methods (e.g. Fixed -> Float conversions).

Benchmark

julia> versioninfo()
Julia Version 1.3.0
Commit 46ce4d7933 (2019-11-26 06:09 UTC)
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-6.0.1 (ORCJIT, skylake)

Matrix of Vec4 (unit: μs)

w64 Float32 v1.2.0 Float32 v1.3.0 Float64 v1.2.0 Float64 v1.3.0
N0f8 3.814 3.571 4.499 5.725
N5f3 3.786 3.457 5.400 5.533
N0f16 4.000 3.871 5.100 6.100
N13f3 3.800 3.700 4.800 6.333
N0f32 4.583 13.599 5.599 6.767
N8f24 5.033 4.243 7.800 8.134
N29f3 4.933 4.300 6.600 6.367
N0f64 13.399 23.000 12.600 21.699
N61f3 13.200 12.199 11.400 11.599
N0f128 38.800 37.099 35.600 35.200
N125f3 44.099 40.199 38.500 40.299

@code_typed

julia> Base.VERSION
v"1.2.0"

julia> @code_typed Float32(1N0f32)
CodeInfo(
1 ─       goto #3 if not false
2nothing::Nothing
3%3  = Base.getfield(x, :i)::UInt32%4  = Base.bitcast(Int32, %3)::Int32%5  = Base.lshr_int(%4, 0x0000000000000010)::Int32%6  = Base.shl_int(%4, 0xfffffffffffffff0)::Int32%7  = Base.ifelse(true, %5, %6)::Int32%8  = Base.sitofp(Float32, %7)::Float32%9  = Base.and_int(%4, 65535)::Int32%10 = Base.shl_int(%9, 0x0000000000000008)::Int32%11 = Base.ashr_int(%9, 0xfffffffffffffff8)::Int32%12 = Base.ifelse(true, %10, %11)::Int32%13 = Base.lshr_int(%4, 0x0000000000000018)::Int32%14 = Base.shl_int(%4, 0xffffffffffffffe8)::Int32%15 = Base.ifelse(true, %13, %14)::Int32%16 = Base.or_int(%12, %15)::Int32%17 = Base.sitofp(Float32, %16)::Float32%18 = Base.mul_float(%17, 9.094947f-13)::Float32%19 = Base.muladd_float(%8, 1.5258789f-5, %18)::Float32
└──       return %19
) => Float32
julia> Base.VERSION
v"1.3.0"

julia> @code_typed Float32(1N0f32)
CodeInfo(
1 ─       goto #3 if not false
2nothing::Nothing
3%3  = Base.getfield(x, :i)::UInt32%4  = Base.bitcast(Int32, %3)::Int32%5  = Base.lshr_int(%4, 0x0000000000000010)::Int32%6  = Base.shl_int(%4, 0xfffffffffffffff0)::Int32%7  = Base.ifelse(true, %5, %6)::Int32%8  = Base.sitofp(Float32, %7)::Float32%9  = Base.and_int(%4, 65535)::Int32%10 = Base.sle_int(0, 8)::Bool%11 = Base.bitcast(UInt64, 8)::UInt64%12 = Base.shl_int(%9, %11)::Int32%13 = Base.neg_int(8)::Int64%14 = Base.bitcast(UInt64, %13)::UInt64%15 = Base.ashr_int(%9, %14)::Int32%16 = Base.ifelse(%10, %12, %15)::Int32%17 = Base.lshr_int(%4, 0x0000000000000018)::Int32%18 = Base.shl_int(%4, 0xffffffffffffffe8)::Int32%19 = Base.ifelse(true, %17, %18)::Int32%20 = Base.or_int(%16, %19)::Int32%21 = Base.sitofp(Float32, %20)::Float32%22 = Base.mul_float(%21, 9.094947f-13)::Float32%23 = Base.muladd_float(%8, 1.5258789f-5, %22)::Float32
└──       return %23
) => Float32

Oh gosh...

kimikage added a commit that referenced this issue Nov 30, 2019
#144) (#145)

Julia 1.3.0 generates more redundant intermediate codes which are eventually optimized.
This trivial change reduces the redundant intermediate codes to promote inlining.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
2 participants