Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix typo in atlases documentation #751

Merged
merged 1 commit into from
Sep 25, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/src/features/atlases.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# [Atlases and charts](@id atlases_and_charts)

Atlases on an ``n``-dimensional manifold ``mathcal M``are collections of charts ``\mathcal A = \{(U_i, φ_i) \colon i \in I\}``, where ``I`` is a (finite or infinite) index family, such that ``U_i \subseteq \mathcal M`` is an open set and each chart ``φ_i: U_i → ℝ^n`` is a homeomorphism. This means, that ``φ_i`` is bijective – sometimes also called one-to-one and onto - and continuous, and its inverse ``φ_i^{-1}`` is continuous as well.
Atlases on an ``n``-dimensional manifold ``\mathcal M``are collections of charts ``\mathcal A = \{(U_i, φ_i) \colon i \in I\}``, where ``I`` is a (finite or infinite) index family, such that ``U_i \subseteq \mathcal M`` is an open set and each chart ``φ_i: U_i → ℝ^n`` is a homeomorphism. This means, that ``φ_i`` is bijective – sometimes also called one-to-one and onto - and continuous, and its inverse ``φ_i^{-1}`` is continuous as well.
The inverse ``φ_i^{-1}`` is called (local) parametrization.
The resulting _parameters_ ``a=φ(p)`` of ``p`` (with respect to the chart ``φ``) are in the literature also called “(local) coordinates”. To distinguish the parameter ``a`` from [`get_coordinates`](@ref) in a basis, we use the terminology parameter in this package.

Expand Down
Loading