Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make Symmetric/Hermitian parametric on matrix type #7992

Merged
merged 1 commit into from
Aug 14, 2014
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions base/linalg/blas.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ export
gbmv,
gemv!,
gemv,
hemv!,
hemv,
sbmv!,
sbmv,
symv!,
Expand Down Expand Up @@ -360,6 +362,35 @@ for (fname, elty) in ((:dsymv_,:Float64),
end
end

### hemv
for (fname, elty) in ((:zhemv_,:Complex128),
(:cgemv_,:Complex64))
@eval begin
function hemv!(uplo::Char, α::$elty, A::StridedMatrix{$elty}, x::StridedVector{$elty}, β::$elty, y::StridedVector{$elty})
n = size(A, 2)
n == length(x) || throw(DimensionMismatch(""))
size(A, 1) == length(y) || throw(DimensionMismatch(""))
lda = max(1, stride(A, 2))
incx = stride(x, 1)
incy = stride(y, 1)
ccall(($fname, libblas), Void,
(Ptr{Uint8}, Ptr{BlasInt}, Ptr{$elty}, Ptr{$elty},
Ptr{BlasInt}, Ptr{$elty}, Ptr{BlasInt}, Ptr{$elty},
Ptr{$elty}, Ptr{BlasInt}),
&uplo, &n, &α, A,
&lda, x, &incx, &β,
y, &incy)
y
end
function hemv(uplo::BlasChar, α::($elty), A::StridedMatrix{$elty}, x::StridedVector{$elty})
hemv!(uplo, α, A, x, zero($elty), similar(x))
end
function hemv(uplo::BlasChar, A::StridedMatrix{$elty}, x::StridedVector{$elty})
hemv(uplo, one($elty), A, x)
end
end
end

### sbmv, (SB) symmetric banded matrix-vector multiplication
for (fname, elty) in ((:dsbmv_,:Float64),
(:ssbmv_,:Float32),
Expand Down
88 changes: 48 additions & 40 deletions base/linalg/symmetric.jl
Original file line number Diff line number Diff line change
@@ -1,63 +1,71 @@
#Symmetric and Hermitian matrices
immutable Symmetric{T} <: AbstractMatrix{T}
S::Matrix{T}
immutable Symmetric{T,S<:AbstractMatrix{T}} <: AbstractMatrix{T}
data::S
uplo::Char
end
Symmetric(A::Matrix, uplo::Symbol=:U) = (chksquare(A);Symmetric(A, string(uplo)[1]))
immutable Hermitian{T} <: AbstractMatrix{T}
S::Matrix{T}
Symmetric(A::AbstractMatrix, uplo::Symbol=:U) = (chksquare(A);Symmetric{eltype(A),typeof(A)}(A, string(uplo)[1]))
immutable Hermitian{T,S<:AbstractMatrix{T}} <: AbstractMatrix{T}
data::S
uplo::Char
end
Hermitian(A::Matrix, uplo::Symbol=:U) = (chksquare(A);Hermitian(A, string(uplo)[1]))
typealias HermOrSym{T} Union(Hermitian{T}, Symmetric{T})
typealias RealHermSymComplexHerm{T<:Real} Union(Hermitian{T}, Symmetric{T}, Hermitian{Complex{T}})
Hermitian(A::AbstractMatrix, uplo::Symbol=:U) = (chksquare(A);Hermitian{eltype(A),typeof(A)}(A, string(uplo)[1]))
typealias HermOrSym{T,S} Union(Hermitian{T,S}, Symmetric{T,S})
typealias RealHermSymComplexHerm{T<:Real,S} Union(Hermitian{T,S}, Symmetric{T,S}, Hermitian{Complex{T},S})

size(A::HermOrSym, args...) = size(A.S, args...)
getindex(A::Symmetric, i::Integer, j::Integer) = (A.uplo == 'U') == (i < j) ? getindex(A.S, i, j) : getindex(A.S, j, i)
getindex(A::Hermitian, i::Integer, j::Integer) = (A.uplo == 'U') == (i < j) ? getindex(A.S, i, j) : conj(getindex(A.S, j, i))
full(A::Symmetric) = copytri!(copy(A.S), A.uplo)
full(A::Hermitian) = copytri!(copy(A.S), A.uplo, true)
convert{T}(::Type{Symmetric{T}},A::Symmetric) = Symmetric(convert(Matrix{T},A.S), A.uplo)
convert{T}(::Type{AbstractMatrix{T}}, A::Symmetric) = Symmetric(convert(AbstractMatrix{T}, A.S), A.uplo)
convert{T}(::Type{Hermitian{T}},A::Hermitian) = Hermitian(convert(Matrix{T},A.S), A.uplo)
convert{T}(::Type{AbstractMatrix{T}}, A::Hermitian) = Hermitian(convert(AbstractMatrix{T}, A.S), A.uplo)
copy(A::Symmetric) = Symmetric(copy(A.S),A.uplo)
copy(A::Hermitian) = Hermitian(copy(A.S),A.uplo)
size(A::HermOrSym, args...) = size(A.data, args...)
getindex(A::Symmetric, i::Integer, j::Integer) = (A.uplo == 'U') == (i < j) ? getindex(A.data, i, j) : getindex(A.data, j, i)
getindex(A::Hermitian, i::Integer, j::Integer) = (A.uplo == 'U') == (i < j) ? getindex(A.data, i, j) : conj(getindex(A.data, j, i))
full(A::Symmetric) = copytri!(copy(A.data), A.uplo)
full(A::Hermitian) = copytri!(copy(A.data), A.uplo, true)
convert{T,S}(::Type{Symmetric{T,S}},A::Symmetric{T,S}) = A
convert{T,S}(::Type{Symmetric{T,S}},A::Symmetric) = Symmetric{T,S}(convert(S,A.data),A.uplo)
convert{T}(::Type{AbstractMatrix{T}}, A::Symmetric) = Symmetric(convert(AbstractMatrix{T}, A.data), symbol(A.uplo))
convert{T,S}(::Type{Hermitian{T,S}},A::Hermitian{T,S}) = A
convert{T,S}(::Type{Hermitian{T,S}},A::Hermitian) = Hermitian{T,S}(convert(S,A.data),A.uplo)
convert{T}(::Type{AbstractMatrix{T}}, A::Hermitian) = Hermitian(convert(AbstractMatrix{T}, A.data), symbol(A.uplo))
copy{T,S}(A::Symmetric{T,S}) = Symmetric{T,S}(copy(A.data),A.uplo)
copy{T,S}(A::Hermitian{T,S}) = Hermitian{T,S}(copy(A.data),A.uplo)
ishermitian(A::Hermitian) = true
ishermitian{T<:Real}(A::Symmetric{T}) = true
ishermitian{T<:Complex}(A::Symmetric{T}) = all(imag(A.S) .== 0)
issym{T<:Real}(A::Hermitian{T}) = true
issym{T<:Complex}(A::Hermitian{T}) = all(imag(A.S) .== 0)
ishermitian{T<:Real,S}(A::Symmetric{T,S}) = true
ishermitian{T<:Complex,S}(A::Symmetric{T,S}) = all(imag(A.data) .== 0)
issym{T<:Real,S}(A::Hermitian{T,S}) = true
issym{T<:Complex,S}(A::Hermitian{T,S}) = all(imag(A.data) .== 0)
issym(A::Symmetric) = true
transpose(A::Symmetric) = A
ctranspose(A::Hermitian) = A

## Matvec
A_mul_B!{T<:BlasFloat,S<:AbstractMatrix}(y::StridedVector{T}, A::Symmetric{T,S}, x::StridedVector{T}) = BLAS.symv!(A.uplo, one(T), A.data, x, zero(T), y)
A_mul_B!{T<:BlasComplex,S<:AbstractMatrix}(y::StridedVector{T}, A::Hermitian{T,S}, x::StridedVector{T}) = BLAS.hemv!(A.uplo, one(T), A.data, x, zero(T), y)
##Matmat
A_mul_B!{T<:BlasFloat,S<:AbstractMatrix}(C::StridedMatrix{T}, A::Symmetric{T,S}, B::StridedMatrix{T}) = BLAS.symm!(A.uplo, one(T), A.data, B, zero(T), C)
A_mul_B!{T<:BlasComplex,S<:AbstractMatrix}(y::StridedMatrix{T}, A::Hermitian{T,S}, x::StridedMatrix{T}) = BLAS.hemm!(A.uplo, one(T), A.data, B, zero(T), C)

*(A::HermOrSym, B::HermOrSym) = full(A)*full(B)
*(A::HermOrSym, B::StridedMatrix) = full(A)*B
*(A::StridedMatrix, B::HermOrSym) = A*full(B)

factorize(A::HermOrSym) = bkfact(A.S, symbol(A.uplo), issym(A))
\(A::HermOrSym, B::StridedVecOrMat) = \(bkfact(A.S, symbol(A.uplo), issym(A)), B)
factorize(A::HermOrSym) = bkfact(A.data, symbol(A.uplo), issym(A))
\(A::HermOrSym, B::StridedVecOrMat) = \(bkfact(A.data, symbol(A.uplo), issym(A)), B)

eigfact!{T<:BlasReal}(A::RealHermSymComplexHerm{T}) = Eigen(LAPACK.syevr!('V', 'A', A.uplo, A.S, 0.0, 0.0, 0, 0, -1.0)...)
eigfact!{T<:BlasReal}(A::RealHermSymComplexHerm{T}, irange::UnitRange) = Eigen(LAPACK.syevr!('V', 'I', A.uplo, A.S, 0.0, 0.0, irange.start, irange.stop, -1.0)...)
eigfact!{T<:BlasReal}(A::RealHermSymComplexHerm{T}, vl::Real, vh::Real) = Eigen(LAPACK.syevr!('V', 'V', A.uplo, A.S, convert(T, vl), convert(T, vh), 0, 0, -1.0)...)
eigvals!{T<:BlasReal}(A::RealHermSymComplexHerm{T}) = LAPACK.syevr!('N', 'A', A.uplo, A.S, 0.0, 0.0, 0, 0, -1.0)[1]
eigvals!{T<:BlasReal}(A::RealHermSymComplexHerm{T}, irange::UnitRange) = LAPACK.syevr!('N', 'I', A.uplo, A.S, 0.0, 0.0, irange.start, irange.stop, -1.0)[1]
eigvals!{T<:BlasReal}(A::RealHermSymComplexHerm{T}, vl::Real, vh::Real) = LAPACK.syevr!('N', 'V', A.uplo, A.S, convert(T, vl), convert(T, vh), 0, 0, -1.0)[1]
eigmax{T<:Real}(A::RealHermSymComplexHerm{T}) = eigvals(A, size(A, 1):size(A, 1))[1]
eigmin{T<:Real}(A::RealHermSymComplexHerm{T}) = eigvals(A, 1:1)[1]
eigfact!{T<:BlasReal,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}) = Eigen(LAPACK.syevr!('V', 'A', A.uplo, A.data, 0.0, 0.0, 0, 0, -1.0)...)
eigfact!{T<:BlasReal,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}, irange::UnitRange) = Eigen(LAPACK.syevr!('V', 'I', A.uplo, A.data, 0.0, 0.0, irange.start, irange.stop, -1.0)...)
eigfact!{T<:BlasReal,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}, vl::Real, vh::Real) = Eigen(LAPACK.syevr!('V', 'V', A.uplo, A.data, convert(T, vl), convert(T, vh), 0, 0, -1.0)...)
eigvals!{T<:BlasReal,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}) = LAPACK.syevr!('N', 'A', A.uplo, A.data, 0.0, 0.0, 0, 0, -1.0)[1]
eigvals!{T<:BlasReal,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}, irange::UnitRange) = LAPACK.syevr!('N', 'I', A.uplo, A.data, 0.0, 0.0, irange.start, irange.stop, -1.0)[1]
eigvals!{T<:BlasReal,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}, vl::Real, vh::Real) = LAPACK.syevr!('N', 'V', A.uplo, A.data, convert(T, vl), convert(T, vh), 0, 0, -1.0)[1]
eigmax{T<:Real,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}) = eigvals(A, size(A, 1):size(A, 1))[1]
eigmin{T<:Real,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}) = eigvals(A, 1:1)[1]

function eigfact!{T<:BlasReal}(A::HermOrSym{T}, B::HermOrSym{T})
vals, vecs, _ = LAPACK.sygvd!(1, 'V', A.uplo, A.S, B.uplo == A.uplo ? B.S : B.S')
function eigfact!{T<:BlasReal,S<:StridedMatrix}(A::HermOrSym{T,S}, B::HermOrSym{T,S})
vals, vecs, _ = LAPACK.sygvd!(1, 'V', A.uplo, A.data, B.uplo == A.uplo ? B.data : B.data')
GeneralizedEigen(vals, vecs)
end
function eigfact!{T<:BlasComplex}(A::Hermitian{T}, B::Hermitian{T})
vals, vecs, _ = LAPACK.sygvd!(1, 'V', A.uplo, A.S, B.uplo == A.uplo ? B.S : B.S')
function eigfact!{T<:BlasComplex,S<:StridedMatrix}(A::Hermitian{T,S}, B::Hermitian{T,S})
vals, vecs, _ = LAPACK.sygvd!(1, 'V', A.uplo, A.data, B.uplo == A.uplo ? B.data : B.data')
GeneralizedEigen(vals, vecs)
end
eigvals!{T<:BlasReal}(A::HermOrSym{T}, B::HermOrSym{T}) = LAPACK.sygvd!(1, 'N', A.uplo, A.S, B.uplo == A.uplo ? B.S : B.S')[1]
eigvals!{T<:BlasComplex}(A::Hermitian{T}, B::Hermitian{T}) = LAPACK.sygvd!(1, 'N', A.uplo, A.S, B.uplo == A.uplo ? B.S : B.S')[1]
eigvals!{T<:BlasReal,S<:StridedMatrix}(A::HermOrSym{T,S}, B::HermOrSym{T,S}) = LAPACK.sygvd!(1, 'N', A.uplo, A.data, B.uplo == A.uplo ? B.data : B.data')[1]
eigvals!{T<:BlasComplex,S<:StridedMatrix}(A::Hermitian{T,S}, B::Hermitian{T,S}) = LAPACK.sygvd!(1, 'N', A.uplo, A.data, B.uplo == A.uplo ? B.data : B.data')[1]

#Matrix-valued functions
expm{T<:Real}(A::RealHermSymComplexHerm{T}) = (F = eigfact(A); F.vectors*Diagonal(exp(F.values))*F.vectors')
Expand Down