Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Splat of Integer needs to be special cased #36087

Closed
TransGirlCodes opened this issue May 30, 2020 · 1 comment · Fixed by #36684
Closed

Splat of Integer needs to be special cased #36087

TransGirlCodes opened this issue May 30, 2020 · 1 comment · Fixed by #36684

Comments

@TransGirlCodes
Copy link

Hi, this issue follows a conversation with @vchuravy and @Keno, who advised I open an issue.

Here's my version info:

Julia Version 1.5.0-beta1.0
Commit 6443f6c95a (2020-05-28 17:42 UTC)
Platform Info:
  OS: macOS (x86_64-apple-darwin19.4.0)
  CPU: Intel(R) Core(TM) i7-6920HQ CPU @ 2.90GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-9.0.1 (ORCJIT, skylake)

So, I've been trying to implement a type using NTuples, instead of ever wider primitive types.
I successfully made a function called shiftright that shifts all of the 2-bit encoded elements in a NTuple one position to the right, and it is as performant as the equivalent shifting of a UInt128:

using BioSequences, BenchmarkTools
# In BioSequences.jl kmers are called Mer, not Kmer so there is no name clash.
struct Kmer{A<:NucleicAcidAlphabet{2},K,N}
    data::NTuple{N,UInt64}
end
# Shortcut
const DNAKmer{K,N} = Kmer{DNAAlphabet{2},K,N}

@inline capacity(::Type{Kmer{A,K,N}}) where {A,K,N} = div(64N, 2)

function (::Type{Kmer{A,K,N}})(seq::LongSequence{A}) where {A<:NucleicAcidAlphabet{2},K,N}
    seqlen = length(seq)
    if seqlen != K
        throw(ArgumentError("seq does not contain the correct number of nucleotides ($seqlen$K)"))
    end
    if seqlen > capacity(Kmer{A,K,N})
        throw(ArgumentError("Cannot build a mer longer than $(capacity(Kmer{A,K,N}))bp long"))
    end

    # Construct the head.
    bases_in_head = div(64 - (64N - 2K), 2)
    head = zero(UInt64)
    @inbounds for i in 1:bases_in_head
        nt = convert(eltype(typeof(seq)), seq[i])
        head = (head << 2) | UInt64(BioSequences.twobitnucs[reinterpret(UInt8, nt) + 0x01])
    end
    
    # And the rest of the sequence
    idx = Ref(bases_in_head + 1)
    
    tail = ntuple(Val{N - 1}()) do i
        Base.@_inline_meta
        body = zero(UInt64)
        @inbounds for i in 1:32
            nt = convert(eltype(typeof(seq)), seq[idx[]])
            body = (body << 2) | UInt64(BioSequences.twobitnucs[reinterpret(UInt8, nt) + 0x01])
            idx[] += 1
        end
        return body
    end

    return Kmer{A,K,N}((head, tail...))
end

# For old primitive type based kmer.
@inline shiftright(x::BigDNAMer{K}) where {K} = BigDNAMer{K}(reinterpret(UInt128, x) >> 2)

# For NTuple based kmer.
@inline function shiftright(x::Kmer{A,K,N}) where {A,K,N}
    return _shiftright(zero(UInt64), x.data...)
end
@inline function _shiftright(carry::UInt64, head::UInt64, tail...)
    return ((head >> 2) | carry, _shiftright((head & UInt64(3)) << 62, tail...)...)
end
@inline _shiftright(carry::UInt64) = ()
dnaseq = LongSequence{DNAAlphabet{2}}(randdnaseq(63))
m = DNAKmer{63, 2}(dnaseq)
oldm = BigDNAMer{63}(dnaseq)
@benchmark shiftright($m)
@benchmark shiftright($oldm)
julia> @benchmark shiftright(m)
BenchmarkTools.Trial: 
  memory estimate:  32 bytes
  allocs estimate:  1
  --------------
  minimum time:     23.807 ns (0.00% GC)
  median time:      24.983 ns (0.00% GC)
  mean time:        27.075 ns (3.33% GC)
  maximum time:     1.573 μs (98.16% GC)
  --------------
  samples:          10000
  evals/sample:     994

julia> @benchmark shiftright(oldm)
BenchmarkTools.Trial: 
  memory estimate:  32 bytes
  allocs estimate:  1
  --------------
  minimum time:     23.241 ns (0.00% GC)
  median time:      23.809 ns (0.00% GC)
  mean time:        26.048 ns (3.40% GC)
  maximum time:     1.539 μs (96.76% GC)
  --------------
  samples:          10000
  evals/sample:     994

julia> @code_llvm shiftright(m)

;  @ REPL[31]:1 within `shiftright'
define void @julia_shiftright_1226([2 x i64]* noalias nocapture sret, [1 x [2 x i64]]* nocapture nonnull readonly dereferenceable(16)) {
top:
;  @ REPL[31]:2 within `shiftright'
  %2 = getelementptr inbounds [1 x [2 x i64]], [1 x [2 x i64]]* %1, i64 0, i64 0, i64 0
  %3 = getelementptr inbounds [1 x [2 x i64]], [1 x [2 x i64]]* %1, i64 0, i64 0, i64 1
; ┌ @ REPL[32]:2 within `_shiftright'
; │┌ @ int.jl:461 within `>>' @ int.jl:455
    %4 = load i64, i64* %2, align 8
    %5 = lshr i64 %4, 2
; │└
; │┌ @ int.jl:463 within `<<' @ int.jl:456
    %6 = shl i64 %4, 62
; │└
; │ @ REPL[32]:2 within `_shiftright' @ REPL[32]:2
; │┌ @ int.jl:461 within `>>' @ int.jl:455
    %7 = load i64, i64* %3, align 8
    %8 = lshr i64 %7, 2
; │└
; │┌ @ int.jl:331 within `|'
    %9 = or i64 %8, %6
; └└
  %.sroa.0.0..sroa_idx = getelementptr inbounds [2 x i64], [2 x i64]* %0, i64 0, i64 0
  store i64 %5, i64* %.sroa.0.0..sroa_idx, align 8
  %.sroa.2.0..sroa_idx1 = getelementptr inbounds [2 x i64], [2 x i64]* %0, i64 0, i64 1
  store i64 %9, i64* %.sroa.2.0..sroa_idx1, align 8
  ret void
}

julia> @code_llvm shiftright(oldm)

;  @ REPL[30]:1 within `shiftright'
define void @julia_shiftright_1228(i128* noalias nocapture sret, i128) {
top:
; ┌ @ int.jl:461 within `>>' @ int.jl:455
   %2 = lshr i128 %1, 2
; └
  store i128 %2, i128* %0, align 8
  ret void
}

So far so good, I'm liking the Ntuples.

But when it comes to implementing a shiftleft it's a different story.
First here's the shiftleft implementation:

# For old primitive type based kmer.
@inline shiftleft(x::BigDNAMer{K}) where {K} = BigDNAMer{K}(reinterpret(UInt128, x) << 2)

# For new NTuple based kmer.
@inline function shiftleft(x::Kmer{A,K,N}) where {A,K,N}
    _, newbits = _shiftleft(x.data...)
    return Kmer{A,K,N}(_cliphead(64N - 2K, newbits...))
end

@inline function _cliphead(by::Integer, head::UInt64, tail...)
    return (head & (typemax(UInt64) >> by), tail...)
end

@inline function _shiftleft(head::UInt64, tail...)
    carry, newtail = _shiftleft(tail...)
    return head >> 62, ((head << 2) | carry, newtail...)
end

@inline _shiftleft(head::UInt64) = (head & 0xC000000000000000) >> 62, head << 2

Seems fine to me at first, but I see allocations on benchmarking and a large performance penalty:

julia> @benchmark shiftleft($m)
BenchmarkTools.Trial: 
  memory estimate:  112 bytes
  allocs estimate:  6
  --------------
  minimum time:     228.094 ns (0.00% GC)
  median time:      230.368 ns (0.00% GC)
  mean time:        241.913 ns (1.64% GC)
  maximum time:     4.400 μs (94.66% GC)
  --------------
  samples:          10000
  evals/sample:     438

julia> @benchmark shiftleft($oldm)
BenchmarkTools.Trial: 
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     0.039 ns (0.00% GC)
  median time:      0.043 ns (0.00% GC)
  mean time:        0.043 ns (0.00% GC)
  maximum time:     0.051 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000

Looking at the @code_typed and @code_warntype I don't see type instability:

julia> @code_typed shiftleft(m)
CodeInfo(
1%1  = Base.getfield(x, :data)::Tuple{UInt64,UInt64}%2  = (getfield)(%1, 1)::UInt64%3  = (getfield)(%1, 2)::UInt64%4  = Base.and_int(%3, 0xc000000000000000)::UInt64%5  = Base.sle_int(0, 62)::Bool%6  = Base.bitcast(UInt64, 62)::UInt64%7  = Base.lshr_int(%4, %6)::UInt64%8  = Base.neg_int(62)::Int64%9  = Base.bitcast(UInt64, %8)::UInt64%10 = Base.shl_int(%4, %9)::UInt64%11 = Base.ifelse(%5, %7, %10)::UInt64%12 = Base.sle_int(0, 2)::Bool%13 = Base.bitcast(UInt64, 2)::UInt64%14 = Base.shl_int(%3, %13)::UInt64%15 = Base.neg_int(2)::Int64%16 = Base.bitcast(UInt64, %15)::UInt64%17 = Base.lshr_int(%3, %16)::UInt64%18 = Base.ifelse(%12, %14, %17)::UInt64%19 = Base.sle_int(0, 2)::Bool%20 = Base.bitcast(UInt64, 2)::UInt64%21 = Base.shl_int(%2, %20)::UInt64%22 = Base.neg_int(2)::Int64%23 = Base.bitcast(UInt64, %22)::UInt64%24 = Base.lshr_int(%2, %23)::UInt64%25 = Base.ifelse(%19, %21, %24)::UInt64%26 = Base.or_int(%25, %11)::UInt64%27 = Core.tuple(%26)::Tuple{UInt64}%28 = Core._apply_iterate(Base.iterate, Core.tuple, %27, %18)::Tuple{UInt64,UInt64}%29 = (getfield)(%28, 1)::UInt64%30 = (getfield)(%28, 2)::UInt64%31 = Base.and_int(%29, 0x3fffffffffffffff)::UInt64%32 = Core.tuple(%31, %30)::Tuple{UInt64,UInt64}%33 = %new(Kmer{DNAAlphabet{2},63,2}, %32)::Kmer{DNAAlphabet{2},63,2}
└──       return %33
) => Kmer{DNAAlphabet{2},63,2}

julia> @code_warntype shiftleft(m)
Variables
  #self#::Core.Compiler.Const(shiftleft, false)
  x::Kmer{DNAAlphabet{2},63,2}
  @_3::Int64
  newbits::Tuple{UInt64,UInt64}

Body::Kmer{DNAAlphabet{2},63,2}
1nothing%2  = Base.getproperty(x, :data)::Tuple{UInt64,UInt64}%3  = Core._apply_iterate(Base.iterate, Main._shiftleft, %2)::Tuple{UInt64,Tuple{UInt64,UInt64}}%4  = Base.indexed_iterate(%3, 1)::Core.Compiler.PartialStruct(Tuple{UInt64,Int64}, Any[UInt64, Core.Compiler.Const(2, false)])
│         Core.getfield(%4, 1)
│         (@_3 = Core.getfield(%4, 2))
│   %7  = Base.indexed_iterate(%3, 2, @_3::Core.Compiler.Const(2, false))::Core.Compiler.PartialStruct(Tuple{Tuple{UInt64,UInt64},Int64}, Any[Tuple{UInt64,UInt64}, Core.Compiler.Const(3, false)])
│         (newbits = Core.getfield(%7, 1))
│   %9  = Core.apply_type(Main.Kmer, $(Expr(:static_parameter, 1)), $(Expr(:static_parameter, 2)), $(Expr(:static_parameter, 3)))::Core.Compiler.Const(Kmer{DNAAlphabet{2},63,2}, false)
│   %10 = (64 * $(Expr(:static_parameter, 3)))::Core.Compiler.Const(128, false)
│   %11 = (2 * $(Expr(:static_parameter, 2)))::Core.Compiler.Const(126, false)
│   %12 = (%10 - %11)::Core.Compiler.Const(2, false)
│   %13 = Core.tuple(%12)::Core.Compiler.Const((2,), false)
│   %14 = Core._apply_iterate(Base.iterate, Main._cliphead, %13, newbits)::Tuple{UInt64,UInt64}%15 = (%9)(%14)::Kmer{DNAAlphabet{2},63,2}
└──       return %15

But on showing the generated llvm to Valentin and Keno they concluded something wasn't right:

julia> @code_llvm shiftleft(m)

;  @ REPL[47]:1 within `shiftleft'
define void @julia_shiftleft_1768([1 x [2 x i64]]* noalias nocapture sret, [1 x [2 x i64]]* nocapture nonnull readonly dereferenceable(16)) {
top:
  %2 = alloca %jl_value_t*, i32 4
  %gcframe = alloca %jl_value_t*, i32 4, align 16
  %3 = bitcast %jl_value_t** %gcframe to i8*
  call void @llvm.memset.p0i8.i32(i8* align 16 %3, i8 0, i32 32, i1 false)
  %4 = call %jl_value_t*** inttoptr (i64 4333723376 to %jl_value_t*** ()*)() #4
;  @ REPL[47]:2 within `shiftleft'
  %5 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 0
  %6 = bitcast %jl_value_t** %5 to i64*
  store i64 8, i64* %6
  %7 = getelementptr %jl_value_t**, %jl_value_t*** %4, i32 0
  %8 = load %jl_value_t**, %jl_value_t*** %7
  %9 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 1
  %10 = bitcast %jl_value_t** %9 to %jl_value_t***
  store %jl_value_t** %8, %jl_value_t*** %10
  %11 = bitcast %jl_value_t*** %7 to %jl_value_t***
  store %jl_value_t** %gcframe, %jl_value_t*** %11
  %12 = getelementptr inbounds [1 x [2 x i64]], [1 x [2 x i64]]* %1, i64 0, i64 0, i64 0
  %13 = getelementptr inbounds [1 x [2 x i64]], [1 x [2 x i64]]* %1, i64 0, i64 0, i64 1
; ┌ @ REPL[49]:2 within `_shiftleft' @ REPL[50]:1
; │┌ @ int.jl:308 within `&'
    %14 = load i64, i64* %13, align 8
; │└
; │┌ @ int.jl:461 within `>>' @ int.jl:455
    %15 = lshr i64 %14, 62
; │└
; │┌ @ int.jl:463 within `<<' @ int.jl:456
    %16 = shl i64 %14, 2
; │└
; │ @ REPL[49]:3 within `_shiftleft'
; │┌ @ int.jl:463 within `<<' @ int.jl:456
    %17 = load i64, i64* %12, align 8
    %18 = shl i64 %17, 2
; │└
; │┌ @ int.jl:331 within `|'
    %19 = or i64 %18, %15
; │└
   %20 = bitcast %jl_value_t*** %4 to i8*
   %21 = call noalias nonnull %jl_value_t* @jl_gc_pool_alloc(i8* %20, i32 1400, i32 16) #1
   %22 = bitcast %jl_value_t* %21 to %jl_value_t**
   %23 = getelementptr %jl_value_t*, %jl_value_t** %22, i64 -1
   store %jl_value_t* inttoptr (i64 4441405376 to %jl_value_t*), %jl_value_t** %23
   %24 = bitcast %jl_value_t* %21 to i64*
   store i64 %19, i64* %24, align 8
   %25 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 3
   store %jl_value_t* %21, %jl_value_t** %25
   %26 = call %jl_value_t* @jl_box_uint64(i64 zeroext %16)
   %27 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 2
   store %jl_value_t* %26, %jl_value_t** %27
   %28 = getelementptr %jl_value_t*, %jl_value_t** %2, i32 0
   store %jl_value_t* inttoptr (i64 4488660112 to %jl_value_t*), %jl_value_t** %28
   %29 = getelementptr %jl_value_t*, %jl_value_t** %2, i32 1
   store %jl_value_t* inttoptr (i64 4438135904 to %jl_value_t*), %jl_value_t** %29
   %30 = getelementptr %jl_value_t*, %jl_value_t** %2, i32 2
   store %jl_value_t* %21, %jl_value_t** %30
   %31 = getelementptr %jl_value_t*, %jl_value_t** %2, i32 3
   store %jl_value_t* %26, %jl_value_t** %31
   %32 = call nonnull %jl_value_t* @jl_f__apply_iterate(%jl_value_t* null, %jl_value_t** %2, i32 4)
; └
;  @ REPL[47]:3 within `shiftleft'
  %33 = bitcast %jl_value_t* %32 to i64*
  %34 = bitcast %jl_value_t* %32 to [2 x i64]*
  %35 = getelementptr inbounds [2 x i64], [2 x i64]* %34, i64 0, i64 1
; ┌ @ REPL[48]:2 within `_cliphead'
; │┌ @ int.jl:308 within `&'
    %36 = load i64, i64* %33, align 8
    %37 = and i64 %36, 4611686018427387903
; │└
   %38 = load i64, i64* %35, align 8
; └
  %.sroa.0.sroa.0.0..sroa.0.0..sroa_cast1.sroa_idx = getelementptr inbounds [1 x [2 x i64]], [1 x [2 x i64]]* %0, i64 0, i64 0, i64 0
  store i64 %37, i64* %.sroa.0.sroa.0.0..sroa.0.0..sroa_cast1.sroa_idx, align 8
  %.sroa.0.sroa.2.0..sroa.0.0..sroa_cast1.sroa_idx5 = getelementptr inbounds [1 x [2 x i64]], [1 x [2 x i64]]* %0, i64 0, i64 0, i64 1
  store i64 %38, i64* %.sroa.0.sroa.2.0..sroa.0.0..sroa_cast1.sroa_idx5, align 8
  %39 = getelementptr %jl_value_t*, %jl_value_t** %gcframe, i32 1
  %40 = load %jl_value_t*, %jl_value_t** %39
  %41 = getelementptr %jl_value_t**, %jl_value_t*** %4, i32 0
  %42 = bitcast %jl_value_t*** %41 to %jl_value_t**
  store %jl_value_t* %40, %jl_value_t** %42
  ret void
}

Namely "the apply_iterate that ruins your parade", but it should be optimised away: Keno concluded an issue needed to be opened, saying "Looks like splat of integer needs to be special cased".

@KristofferC
Copy link
Member

Dup of #29114?

Keno added a commit that referenced this issue Jun 6, 2020
As noted in #36087 and #29114, splatting integers currently has a
performance penalty that is unexpected. For tuples and SimpleVectors,
we have special purpose inliners that will simply inline the
tuple/SimpleVector into the call being splatted. However, for
everything else we'd have to run the iteration protocol to find
out what the values to substitute are. This change does just that,
limited to the case of length-1 (and empty) iterables. Benchmark:

```
f(x) = (x...,)
@code_typed f(1)
@benchmark f(1)
```

Before:
```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = Core._apply_iterate(Base.iterate, Core.tuple, x)::Tuple{Int64}
└──      return %1
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  32 bytes
  allocs estimate:  2
  --------------
  minimum time:     209.357 ns (0.00% GC)
  median time:      213.404 ns (0.00% GC)
  mean time:        218.674 ns (0.16% GC)
  maximum time:     1.922 μs (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     540
```

After:
```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = invoke Base.iterate(_2::Int64)::Tuple{Int64,Nothing}
│   %2 = (getfield)(%1, 1)::Int64
│   %3 = (getfield)(%1, 2)::Nothing
│        invoke Base.iterate(_2::Int64, %3::Nothing)::Nothing
│   %5 = Core.tuple(%2)::Tuple{Int64}
└──      return %5
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     3.044 ns (0.00% GC)
  median time:      3.047 ns (0.00% GC)
  mean time:        3.049 ns (0.00% GC)
  maximum time:     7.700 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

Obviously this isn't 100% optimal yet, because the `iterate` calls themselves
don't get inlined, but it's a lot better. Inlining the `iterate` calls is
left for a follow up commit.
Keno added a commit that referenced this issue Jul 15, 2020
This supersedes #36169. Rather than re-implementing the iteration
analysis as done there, this uses the new stmtinfo infrastrcture
to propagate all the analysis done during inference all the way
to inlining. As a result, it applies not only to splats of
singletons, but also to splats of any other short iterable
that inference can analyze. E.g.:

```
f(x) = (x...,)
@code_typed f(1=>2)
@benchmark f(1=>2)
```

Before:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Core._apply_iterate(Base.iterate, Core.tuple, x)::Tuple{Int64,Int64}
└──      return %1
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  96 bytes
  allocs estimate:  3
  --------------
  minimum time:     242.659 ns (0.00% GC)
  median time:      246.904 ns (0.00% GC)
  mean time:        255.390 ns (1.08% GC)
  maximum time:     4.415 μs (93.94% GC)
  --------------
  samples:          10000
  evals/sample:     405
```

After:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Base.getfield(x, 1)::Int64
│   %2 = Base.getfield(x, 2)::Int64
│   %3 = Core.tuple(%1, %2)::Tuple{Int64,Int64}
└──      return %3
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.701 ns (0.00% GC)
  median time:      1.925 ns (0.00% GC)
  mean time:        1.904 ns (0.00% GC)
  maximum time:     6.941 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

I also implemented the TODO, I had left in #36169 to inline
the iterate calls themselves, which gives another 3x
improvement over the solution in that PR:

```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = Core.tuple(x)::Tuple{Int64}
└──      return %1
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.696 ns (0.00% GC)
  median time:      1.699 ns (0.00% GC)
  mean time:        1.702 ns (0.00% GC)
  maximum time:     5.389 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

Fixes #36087
Fixes #29114
Keno added a commit that referenced this issue Jul 15, 2020
This supersedes #36169. Rather than re-implementing the iteration
analysis as done there, this uses the new stmtinfo infrastrcture
to propagate all the analysis done during inference all the way
to inlining. As a result, it applies not only to splats of
singletons, but also to splats of any other short iterable
that inference can analyze. E.g.:

```
f(x) = (x...,)
@code_typed f(1=>2)
@benchmark f(1=>2)
```

Before:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Core._apply_iterate(Base.iterate, Core.tuple, x)::Tuple{Int64,Int64}
└──      return %1
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  96 bytes
  allocs estimate:  3
  --------------
  minimum time:     242.659 ns (0.00% GC)
  median time:      246.904 ns (0.00% GC)
  mean time:        255.390 ns (1.08% GC)
  maximum time:     4.415 μs (93.94% GC)
  --------------
  samples:          10000
  evals/sample:     405
```

After:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Base.getfield(x, 1)::Int64
│   %2 = Base.getfield(x, 2)::Int64
│   %3 = Core.tuple(%1, %2)::Tuple{Int64,Int64}
└──      return %3
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.701 ns (0.00% GC)
  median time:      1.925 ns (0.00% GC)
  mean time:        1.904 ns (0.00% GC)
  maximum time:     6.941 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

I also implemented the TODO, I had left in #36169 to inline
the iterate calls themselves, which gives another 3x
improvement over the solution in that PR:

```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = Core.tuple(x)::Tuple{Int64}
└──      return %1
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.696 ns (0.00% GC)
  median time:      1.699 ns (0.00% GC)
  mean time:        1.702 ns (0.00% GC)
  maximum time:     5.389 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

Fixes #36087
Fixes #29114
Keno added a commit that referenced this issue Jul 15, 2020
This supersedes #36169. Rather than re-implementing the iteration
analysis as done there, this uses the new stmtinfo infrastrcture
to propagate all the analysis done during inference all the way
to inlining. As a result, it applies not only to splats of
singletons, but also to splats of any other short iterable
that inference can analyze. E.g.:

```
f(x) = (x...,)
@code_typed f(1=>2)
@benchmark f(1=>2)
```

Before:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Core._apply_iterate(Base.iterate, Core.tuple, x)::Tuple{Int64,Int64}
└──      return %1
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  96 bytes
  allocs estimate:  3
  --------------
  minimum time:     242.659 ns (0.00% GC)
  median time:      246.904 ns (0.00% GC)
  mean time:        255.390 ns (1.08% GC)
  maximum time:     4.415 μs (93.94% GC)
  --------------
  samples:          10000
  evals/sample:     405
```

After:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Base.getfield(x, 1)::Int64
│   %2 = Base.getfield(x, 2)::Int64
│   %3 = Core.tuple(%1, %2)::Tuple{Int64,Int64}
└──      return %3
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.701 ns (0.00% GC)
  median time:      1.925 ns (0.00% GC)
  mean time:        1.904 ns (0.00% GC)
  maximum time:     6.941 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

I also implemented the TODO, I had left in #36169 to inline
the iterate calls themselves, which gives another 3x
improvement over the solution in that PR:

```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = Core.tuple(x)::Tuple{Int64}
└──      return %1
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.696 ns (0.00% GC)
  median time:      1.699 ns (0.00% GC)
  mean time:        1.702 ns (0.00% GC)
  maximum time:     5.389 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

Fixes #36087
Fixes #29114
Keno added a commit that referenced this issue Jul 17, 2020
This supersedes #36169. Rather than re-implementing the iteration
analysis as done there, this uses the new stmtinfo infrastrcture
to propagate all the analysis done during inference all the way
to inlining. As a result, it applies not only to splats of
singletons, but also to splats of any other short iterable
that inference can analyze. E.g.:

```
f(x) = (x...,)
@code_typed f(1=>2)
@benchmark f(1=>2)
```

Before:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Core._apply_iterate(Base.iterate, Core.tuple, x)::Tuple{Int64,Int64}
└──      return %1
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  96 bytes
  allocs estimate:  3
  --------------
  minimum time:     242.659 ns (0.00% GC)
  median time:      246.904 ns (0.00% GC)
  mean time:        255.390 ns (1.08% GC)
  maximum time:     4.415 μs (93.94% GC)
  --------------
  samples:          10000
  evals/sample:     405
```

After:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Base.getfield(x, 1)::Int64
│   %2 = Base.getfield(x, 2)::Int64
│   %3 = Core.tuple(%1, %2)::Tuple{Int64,Int64}
└──      return %3
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.701 ns (0.00% GC)
  median time:      1.925 ns (0.00% GC)
  mean time:        1.904 ns (0.00% GC)
  maximum time:     6.941 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

I also implemented the TODO, I had left in #36169 to inline
the iterate calls themselves, which gives another 3x
improvement over the solution in that PR:

```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = Core.tuple(x)::Tuple{Int64}
└──      return %1
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.696 ns (0.00% GC)
  median time:      1.699 ns (0.00% GC)
  mean time:        1.702 ns (0.00% GC)
  maximum time:     5.389 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

Fixes #36087
Fixes #29114
Keno added a commit that referenced this issue Jul 17, 2020
This supersedes #36169. Rather than re-implementing the iteration
analysis as done there, this uses the new stmtinfo infrastrcture
to propagate all the analysis done during inference all the way
to inlining. As a result, it applies not only to splats of
singletons, but also to splats of any other short iterable
that inference can analyze. E.g.:

```
f(x) = (x...,)
@code_typed f(1=>2)
@benchmark f(1=>2)
```

Before:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Core._apply_iterate(Base.iterate, Core.tuple, x)::Tuple{Int64,Int64}
└──      return %1
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  96 bytes
  allocs estimate:  3
  --------------
  minimum time:     242.659 ns (0.00% GC)
  median time:      246.904 ns (0.00% GC)
  mean time:        255.390 ns (1.08% GC)
  maximum time:     4.415 μs (93.94% GC)
  --------------
  samples:          10000
  evals/sample:     405
```

After:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Base.getfield(x, 1)::Int64
│   %2 = Base.getfield(x, 2)::Int64
│   %3 = Core.tuple(%1, %2)::Tuple{Int64,Int64}
└──      return %3
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.701 ns (0.00% GC)
  median time:      1.925 ns (0.00% GC)
  mean time:        1.904 ns (0.00% GC)
  maximum time:     6.941 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

I also implemented the TODO, I had left in #36169 to inline
the iterate calls themselves, which gives another 3x
improvement over the solution in that PR:

```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = Core.tuple(x)::Tuple{Int64}
└──      return %1
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.696 ns (0.00% GC)
  median time:      1.699 ns (0.00% GC)
  mean time:        1.702 ns (0.00% GC)
  maximum time:     5.389 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

Fixes #36087
Fixes #29114
Keno added a commit that referenced this issue Jul 18, 2020
This supersedes #36169. Rather than re-implementing the iteration
analysis as done there, this uses the new stmtinfo infrastrcture
to propagate all the analysis done during inference all the way
to inlining. As a result, it applies not only to splats of
singletons, but also to splats of any other short iterable
that inference can analyze. E.g.:

```
f(x) = (x...,)
@code_typed f(1=>2)
@benchmark f(1=>2)
```

Before:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Core._apply_iterate(Base.iterate, Core.tuple, x)::Tuple{Int64,Int64}
└──      return %1
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  96 bytes
  allocs estimate:  3
  --------------
  minimum time:     242.659 ns (0.00% GC)
  median time:      246.904 ns (0.00% GC)
  mean time:        255.390 ns (1.08% GC)
  maximum time:     4.415 μs (93.94% GC)
  --------------
  samples:          10000
  evals/sample:     405
```

After:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Base.getfield(x, 1)::Int64
│   %2 = Base.getfield(x, 2)::Int64
│   %3 = Core.tuple(%1, %2)::Tuple{Int64,Int64}
└──      return %3
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.701 ns (0.00% GC)
  median time:      1.925 ns (0.00% GC)
  mean time:        1.904 ns (0.00% GC)
  maximum time:     6.941 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

I also implemented the TODO, I had left in #36169 to inline
the iterate calls themselves, which gives another 3x
improvement over the solution in that PR:

```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = Core.tuple(x)::Tuple{Int64}
└──      return %1
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.696 ns (0.00% GC)
  median time:      1.699 ns (0.00% GC)
  mean time:        1.702 ns (0.00% GC)
  maximum time:     5.389 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

Fixes #36087
Fixes #29114
simeonschaub pushed a commit to simeonschaub/julia that referenced this issue Aug 11, 2020
This supersedes JuliaLang#36169. Rather than re-implementing the iteration
analysis as done there, this uses the new stmtinfo infrastrcture
to propagate all the analysis done during inference all the way
to inlining. As a result, it applies not only to splats of
singletons, but also to splats of any other short iterable
that inference can analyze. E.g.:

```
f(x) = (x...,)
@code_typed f(1=>2)
@benchmark f(1=>2)
```

Before:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Core._apply_iterate(Base.iterate, Core.tuple, x)::Tuple{Int64,Int64}
└──      return %1
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  96 bytes
  allocs estimate:  3
  --------------
  minimum time:     242.659 ns (0.00% GC)
  median time:      246.904 ns (0.00% GC)
  mean time:        255.390 ns (1.08% GC)
  maximum time:     4.415 μs (93.94% GC)
  --------------
  samples:          10000
  evals/sample:     405
```

After:
```
julia> @code_typed f(1=>2)
CodeInfo(
1 ─ %1 = Base.getfield(x, 1)::Int64
│   %2 = Base.getfield(x, 2)::Int64
│   %3 = Core.tuple(%1, %2)::Tuple{Int64,Int64}
└──      return %3
) => Tuple{Int64,Int64}

julia> @benchmark f(1=>2)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.701 ns (0.00% GC)
  median time:      1.925 ns (0.00% GC)
  mean time:        1.904 ns (0.00% GC)
  maximum time:     6.941 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

I also implemented the TODO, I had left in JuliaLang#36169 to inline
the iterate calls themselves, which gives another 3x
improvement over the solution in that PR:

```
julia> @code_typed f(1)
CodeInfo(
1 ─ %1 = Core.tuple(x)::Tuple{Int64}
└──      return %1
) => Tuple{Int64}

julia> @benchmark f(1)
BenchmarkTools.Trial:
  memory estimate:  0 bytes
  allocs estimate:  0
  --------------
  minimum time:     1.696 ns (0.00% GC)
  median time:      1.699 ns (0.00% GC)
  mean time:        1.702 ns (0.00% GC)
  maximum time:     5.389 ns (0.00% GC)
  --------------
  samples:          10000
  evals/sample:     1000
```

Fixes JuliaLang#36087
Fixes JuliaLang#29114
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants