-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Multiplication of a SharedArray and an Array #19238
Labels
parallelism
Parallel or distributed computation
Comments
Keno
added a commit
that referenced
this issue
Sep 20, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 20, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 22, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 27, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 27, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 27, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 27, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 27, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 28, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 29, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 29, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 29, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Sep 29, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Oct 2, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Keno
added a commit
that referenced
this issue
Oct 3, 2017
This redoes `reinterpret` in julia rather than punning the memory of the actual array. The motivation for this is to avoid the API limitations of the current reinterpret implementation (Array only, preventing strong TBAA, alignment problems). The surface API essentially unchanged, though the shape argument to reinterpret is removed, since those concepts are now orthogonal. The return type from `reinterpret` is now `ReinterpretArray`, which implements the AbstractArray interface and does the reinterpreting lazily on demand. The compiler is able to fold away the abstraction and generate very tight IR: ``` julia> ar = reinterpret(Complex{Int64}, rand(Int64, 1000)); julia> typeof(ar) Base.ReinterpretArray{Complex{Int64},Int64,1,Array{Int64,1}} julia> f(ar) = @inbounds return ar[1] f (generic function with 1 method) julia> @code_llvm f(ar) ; Function f ; Location: REPL[2] define void @julia_f_63575({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(8)) #0 { top: ; Location: REPL[2]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to %jl_value_t addrspace(10)* addrspace(11)* %4 = load %jl_value_t addrspace(10)*, %jl_value_t addrspace(10)* addrspace(11)* %3, align 8 %5 = addrspacecast %jl_value_t addrspace(10)* %4 to %jl_value_t addrspace(11)* %6 = bitcast %jl_value_t addrspace(11)* %5 to i64* addrspace(11)* %7 = load i64*, i64* addrspace(11)* %6, align 8 %8 = load i64, i64* %7, align 8 %9 = getelementptr i64, i64* %7, i64 1 %10 = load i64, i64* %9, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %8, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %10, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } julia> g(a) = @inbounds return reinterpret(Complex{Int64}, a)[1] g (generic function with 1 method) julia> @code_llvm g(randn(1000)) ; Function g ; Location: REPL[4] define void @julia_g_63642({ i64, i64 } addrspace(11)* noalias nocapture sret, %jl_value_t addrspace(10)* dereferenceable(40)) #0 { top: ; Location: REPL[4]:1 ; Function getindex; { ; Location: reinterpretarray.jl:31 %2 = addrspacecast %jl_value_t addrspace(10)* %1 to %jl_value_t addrspace(11)* %3 = bitcast %jl_value_t addrspace(11)* %2 to double* addrspace(11)* %4 = load double*, double* addrspace(11)* %3, align 8 %5 = bitcast double* %4 to i64* %6 = load i64, i64* %5, align 8 %7 = getelementptr double, double* %4, i64 1 %8 = bitcast double* %7 to i64* %9 = load i64, i64* %8, align 8 %.sroa.0.0..sroa_idx = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 0 store i64 %6, i64 addrspace(11)* %.sroa.0.0..sroa_idx, align 8 %.sroa.3.0..sroa_idx13 = getelementptr inbounds { i64, i64 }, { i64, i64 } addrspace(11)* %0, i64 0, i32 1 store i64 %9, i64 addrspace(11)* %.sroa.3.0..sroa_idx13, align 8 ;} ret void } ``` In addition, the new `reinterpret` implementation is able to handle any AbstractArray (whether useful or not is a separate decision): ``` invoke(reinterpret, Tuple{Type{Complex{Float64}}, AbstractArray}, Complex{Float64}, speye(10)) 5×10 Base.ReinterpretArray{Complex{Float64},Float64,2,SparseMatrixCSC{Float64,Int64}}: 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+1.0im ``` The remaining todo is to audit the uses of reinterpret in base. I've fixed up the uses themselves, but there's code deeper in the array code that needs to be broadened to allow ReinterpretArray. Fixes #22849 Fixes #19238
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
An
Array{Float64}
can be multiplied with aSharedArray{Complex128}
but the reverse results in the following exception being thrown:If the
eltype
of the arrays match both products are executed without errors.This sample was run on:
and the nightly developers build:
The text was updated successfully, but these errors were encountered: